
Practical Probability:
Applying pGCL to Lattice Scheduling

David Cock

NICTA and University of New South Wales
David.Cock@nicta.com.au

Abstract. Building on our published mechanisation of the probabilistic
program logic pGCL we present a verified lattice scheduler, a standard
covert-channel mitigation technique, employing randomisation as an el-
egant means of ensuring starvation-freeness. We show that this sched-
uler enforces probabilistic non-leakage, in addition to non-starvation.
The refinement framework employed is compatible with that used in the
L4.verified project, supporting our argument that full-scale verification of
probabilistic security properties for realistic systems software is feasible.

1 Introduction

In this paper, we demonstrate that mechanically verifying realistic probabilis-
tic software, with probabilistic properties, is feasible. Our ‘realistic probabilistic
program’ is a hybrid probabilistic lattice-lottery scheduler, designed to mitigate
information flow through a shared cache, while guaranteeing fairness and re-
maining simple and efficient. The probabilistic properties are: stochastic fairness
— that the probability of starvation for any domain is zero, and non-leakage
— that the distribution of observable outputs is independent of hidden inputs.
Finally, we make our argument for feasibility by proving our results in a refine-
ment framework compatible with the L4.verified [KEH+09] proof stack, which
established by refinement that the seL4 microkernel faithfully implements its
specification. We are able to restrict probabilistic reasoning to small regions,
allowing the remainder of the proof to proceed in a traditional manner.

We begin with an abstract, nondeterministic specification, which we refine
iteratively. Our first refinement is to a probabilistic version, and then to a prac-
tical implementation based on lottery scheduling. We demonstrate that this re-
finement could be continued using the L4.verified results. Finally, we attach a
hardware model, allowing us to demonstrate that we do in fact eliminate leakage
through the cache.

We express our results using the probabilistic Guarded Command Language
(pGCL) of McIver and Morgan [MM04], previously mechanised in HOL4 [HMM05].
This language has been applied in a practical context, namely analysing parts
of the FireWire protocol [FS03]. We demonstrate that it is equally applicable
to systems-level software. Our own mechanization of pGCL in Isabelle/HOL,
specifically aimed at the lightweight integration of existing results, has been
described previously [Coc12].



We assume a lattice-based security policy, an established idea, motivated by
institutional classification policies [DoD86], and formally treated by authors in-
cluding Denning [Den76]. Lattice scheduling, due to Hu et al. [Hu92], arose from
the VAX VMM project [KZB+91], and is intended to mitigate precisely the kind
of leakage that we consider. Lottery scheduling is an established technique for
efficient hierarchical allocation of execution time, introduced by Waldspurger et
al. [WW94] Our approach uses it only as an elegant way to implement probabilis-
tic scheduling: we do not take advantage of hierarchical resource distribution.

While the threat from cache-based channels has long been recognised, inter-
est has been spurred by recent work demonstrating the feasibility of attacking
cryptographic algorithms in a co-hosted system [Ber04,Per05]. Alternative me-
chanical approaches include that of Barthe et al. [BBCL12] Our work contrasts
with this by incorporating probability, and interfacing with a large existing ver-
ification effort [KEH+09].

Many authors have analysed the leakage properties of scheduling algorithms
[CM07,HN12,GKV11], some employing mechanical proof. Most existing analyses
focus on leakage due to the actions of the scheduler itself, or due to the order of
updates to shared variables. We are specifically concerned with mitigating a side
channel, outside any explicitly shared state. The absence of unintended channels
through explicit mechanisms in seL4 has already been established [MMB+12].

1.1 pGCL in Isabelle

We first summarise pGCL, noting small variations in syntax relative to the
standard presentation. This summary is naturally incomplete, and the interested
reader is directed to the aforementioned work of McIver and Morgan [MM04],
and to our own previous summary of the mechanisation [Coc12].

Programs in pGCL have two interpretations: The first is as a probabilis-
tic state transformer, taking a given starting state to one of several possi-
ble final states, with well-defined probability. The second interpretation is as
an expectation transformer, mapping a real-valued function on final states (a
post-expectation), to one on initial states (a pre-expectation). The weakest pre-
expectation (wp) of a post-expectation, under a program, and evaluated at some
initial state is the smallest expected value (minimised over demonic choices) of
the post-expectation in the final state, if the program were to execute from the
given initial state. For example, the weakest pre-expectation of the expression
x, under the program

(x := 1 ⊕1/2 x := 0) u (x := 2 ⊕1/3 x := 1) ,

(where a ⊕p b is probabilistic choice and a u b demonic) is

min
(

1
2 × 1 + 1

2 × 0
) (

1
3 × 2 + 2

3 × 1
)

= 1
2 .

While our mechanisation is in terms of expectation transformers, the two
interpretations are equivalent, and the forward transformer is generally more
intuitive, giving the most straightforward way to visualise results.



Programs are constructed using several operators, including:

– Sequential composition: a ; ; b.
– Name binding: n is f in a n, where f is a function from state to value.
– Demonic choice: x :∈S, where S is a set-valued function, and x a variable

(field) name.
– Probabilistic choice: x :∈S at p, where p is a distribution over S.
– Finite repetition: an = a ; ; . . . ; ; a︸ ︷︷ ︸

n

.

– Lifting from a non-probabilistic monad: Exec M .
– Applying a state transformer: Apply f .

While programs may operate on any state type, in practice we use Isabelle’s
record types: tuples with labelled fields, similar to C structures. The advantage
is that with support from our mechanisation, we are able to use Isabelle field
identifiers directly as pGCL variable names. For example we may write x := v,
which is translated internally to Apply λs. x_update (λ. v) s, an Isabelle record
update. This program could be applied to the following state, expressing a record
of two fields, of types τ and µ:

record state = x :: τ
y :: µ

The assertion language is shallowly embedded, and closely resembles the
predicate-transformer semantics of Dijkstra’s GCL [Dij75]. There are a few novel
probabilistic constructions, including:

– Entailment: P 
 Q = ∀s. P s ≤ Q s (standard syntax V).
– Conjunction: P && Q = λs. max 0 (P s+Q s− 1) (standard syntax &).
– Embedding: «P» = λs. if P s then 1 else 0 (standard syntax [P ]).

Probabilistic entailment is a straightforward generalisation of predicate entail-
ment, P ` Q⇔ ∀s. P s→ Q s, while embedding is simply syntactic sugar. The
form of probabilistic conjunction is chosen for compatibility with its boolean
equivalent i.e. «P»&& «Q» = «λs. P s∧Q s». That we use this particular form
(rather than, for example P && Q = λs. P s × Q s, which gives the same re-
sults on embedded predicates) is for technical reasons concerning the underlying
semantic interpretation1.

The following is an example specification in expectation-entailment style that
illustrates the essential features of the logic:

«P»&& (λ_. p) 
 wp (a ; ; b) «Q»
1 Briefly, the definition given is the only option that is sub-linear, a generalisation (to
real-valued functions), and weakening, of the linearity condition required of expec-
tation transformers in pure GCL. All sub-linear transformers are linear, and sub-
linearity reduces to linearity in the case of embedded boolean predicates, but (for
example) demonic choice, aub = λs. min (a s) (b s), is not linear if a or b take values
other than 0 and 1. All pGCL primitives are sub-linear, this being the healthiness
condition for transformers. For further details, see McIver & Morgan [MM04].



This states that from any initial state satisfying P , after executing a followed
by b, we reach a state satisfying Q with probability at least p.

Conventions For simplicity, we employ the following conventions throughout:
Unbound variables are implicitly universally quantified, and all expectations are
non-negative, and bounded by 1.

2 Security Policies and Covert Channels

3 : {A,B}

1 : {A}

99

2 : {B}

ee

⊥ : { }

ee

OO

99

Fig. 1. The classification/clearance lattice

We consider a hierarchically partitioned system, as depicted in Figure 1.
Here, all data is classified with one (or both) of the labels A and B. An agent
(or program) may be cleared to process one, both, or neither of these, giving rise
to 4 clearance domains: 1 for A only, 2 for B only, 3 for both and ⊥ for neither.
Our goal is to ensure that information derived from labelled data can only flow
into a domain cleared to process it. The formulation of access control policies for
such systems, encompassing explicit channels, is a well-studied problem [Den76].
This work is concerned with formalising implementation techniques to prevent
leakage through unintended, implicit channels (either covert- or side-channels).

33333333

3 2

domain switch
33333333

22222222

22222222

Conflict!

Fig. 2. The cache-contention channel



Figure 2 outlines such a channel, exploiting cache contention. The cache is
represented by an array of cells (lines), and 3 and 2 are two of our supposedly
isolated domains. We ignore the associativity of the cache (one cell may in fact
hold several lines), as it only serves to reduce contention.

As domain 3 executes and accesses memory, it gradually fills the cache with
its own data. On switching to domain 2, domain 3’s data remains in the cache,
but is now inaccessible (the greyed-out cells). This access control is enforced by
the hardware. As 2 starts to fill the cache, it may eventually attempt to store a
value in one of the grey squares, encountering a conflict, as indicated.

When a conflict occurs, the cache silently writes (cleans) the old value (do-
main 3’s) into main memory, before storing domain 2’s new value2. This process
is in principle invisible to domain 2. However, if 2 is able to measure its own
execution time, the delay caused by writing (cleaning) the cache line to memory
can be detected. Domain 2 can thus infer which cache lines 3 has accessed, in
violation of the security policy.

The leakage is dramatic: On a uniprocessor, where domains cannot execute
concurrently, the bandwidth tops 10kb/s, while on a multiprocessor, bandwidths
in excess of 1Mb/s are easily achieved.

3 Countermeasures Through Refinement

3

��

1

??

2

__

��
⊥

__ ??

Fig. 3. The scheduling graph, S

The simplest countermeasure to the cache channel is to flush the cache on
every domain switch, returning it to a known secure state. This is, however,
a very expensive option: A modern processor, for example an Intel Xeon E7-
8870, might have a 30MiB cache, taking ≈ 2.5× 106 cycles to refill (at the peak
theoretical bandwidth of the memory subsystem), or 89% of the 2.8× 106 cycles
per preemption interval at 1000Hz.

A simple optimisation [Hu92] is to clear the cache only when essential. Con-
sidering our partitioned system, it is acceptable to permit leakage from a domain
to any other domain whose clearance includes that of the first. Thus it is only
2 In a write-back cache with write-allocate. Read contention occurs in all caches.



necessary to flush when decreasing clearance level. This is the essence of lattice
scheduling: Transition upward in the classification lattice for as long as possi-
ble, before finally starting again at the bottom, employing countermeasures to
protect the downward transition.

To implement this, we construct the scheduling graph in Figure 3; consistent
with the classification graph in Figure 1. The scheduling graph gives valid domain
transitions for the system, and contains only edges from the classification graph,
or transitions to the downgrader, ⊥. These latter are emphasised with a dashed
arrow. In the implementation, the shared cache must be flushed on entering the
downgrader. We omit the edges from ⊥ to 3, and from 1 to ⊥, to emphasise that
not all edges need be included.

The conditions on the scheduling graph (modelled as a relation) are captured
as assumptions on S (encapsulated within an Isabelle locale), with the most
important being downgrading:
Lemma 1 (Downgrading). If S allows a downward transition, it is to the
downgrader, ⊥:

(c, n) ∈ S clearance c * clearance n
n = ⊥

We specify the scheduler nondeterministically over the valid transitions from
the current domain, using the unconstrained demonic choice operator:

record stateA = current_domain :: dom_id
scheduleS =
c is current_domain in
current_domain :∈ (λ_. {n. (c, n) ∈ S})

3.1 A Randomised Scheduler

3

1.0

��

1

1.0
??

2

0.5
__

0.5

��
⊥

0.25

__

0.75

??

Fig. 4. The transition graph, T

The classically nondeterministic specification of scheduleS, together with the
downgrading property, capture the requirement that all downward transitions



pass through the downgrader. As a practical specification however, it has a
disadvantage: it allows starvation. A refinement of this specification is free to
follow any trace within the graph, for example (⊥, 2,⊥, 2, . . . ), never scheduling
domain 3.

We could extend the specification to guarantee starvation freeness, by dic-
tating its behaviour over traces in a modal logic. This would risk obscuring the
present simplicity of the specification, and would require a more complex imple-
mentation, needing to take into account more than just the current domain.

Randomisation provides an elegant alternative: By assigning a probability
to each edge in Figure 3, we produce the transition graph in Figure 4. We only
require that the outgoing probabilities from each node sum to 1, and that any
transition with non-zero probability appears as an edge in Figure 3. Implemen-
tation remains simple, needing only to consider the current state in choosing a
transition. More importantly, with appropriately chosen transition probabilities,
the probability of starvation can be made zero. We specify the new scheduler
using the probabilistic choice operator:

scheduleT =
c is current_domain in
current_domain :∈ (λ_. {⊥, 1, 2, 3} at (λ_ n. T (c, n))

The scheduler is now a Markov process, with T fixing its transition rule.
Under the appropriate conditions (strong-connectedness, or positive recurrence
interval for all states), there exists an asymptotic equilibrium distribution. These
conditions are satisfied by T , and thus in addition to avoiding starvation, the
randomised lattice scheduler guarantees statistical fairness, over the long run.

3.2 Program Refinement and Starvation-Freedom

In order to eventually show non-leakage, we need to demonstrate that the down-
grading property is also shared by scheduleT. We do so by establishing that
scheduleT is a probabilistic refinement of scheduleS.

Definition 1. Program b refines program a, written a v b, exactly when all
expectation-entailments on a also hold on b:

P 
 wp a Q
P 
 wp b Q

Lemma 2. The transition scheduler refines the lattice scheduler:

scheduleS v scheduleT

Note that, in the terminology of pGCL, the specification of scheduleT is
completely ‘deterministic’, referring to the absence of demonic nondeterminism.



This terminology makes sense in light of the refinement order: Demonic nonde-
terminism can be restricted by refinement, whereas probabilistic choice cannot.
Once a specification is fully probabilistic, it is maximal in the refinement lattice,
and one can take it no further. This implies that any further refinement is, in
fact, semantic equivalence. We make use of this fact shortly, as a shortcut to
establishing program correspondence.

Having fixed transition probabilities, we can establish non-starvation. Pro-
ceeding in stages, we first show that starting in any domain, the probability of
ending in domain ⊥ after 4 steps is at least 1/64:

(in_dom di) &&
(
λ_. 1

64

)

 wp scheduleT4 (in_dom ⊥)

where

in_dom d ↔ «λs. current_domain s = d»

We further establish that from domain ⊥, after a further 4 steps, there is a
non-zero probability of ending in any given final domain:

(in_dom ⊥) &&
(
λ_. 1

64

)

 wp scheduleT4 (in_dom df )

Combining these, we have:(
λ_. 1

4096

)

 wp scheduleT8 (in_dom df ) (1)

Finally:

Lemma 3 (Non-starvation). Taking at least 8 steps from any initial domain,
we reach any final domain with non-zero probability:

∀s. 0 < wp scheduleT 8+n (in_dom df ) s

Proof. By induction on n. Equation 1 establishes the result for n = 0. By in-
spection of Figure 4, we see that every domain is reachable in one step, and
with non-zero probability, from at least one other, and thus if all domains are
reachable after n steps then all are reachable after n+ 1. ut

Figure 5 summarises these results. We have downgrading for scheduleS by as-
sumption, and non-starvation for the probabilistic scheduleT, as indicated by the
dotted arrows. Refinement is depicted as a solid arrow. The arrow directions sum-
marise the compositionality of results: composing with refinement, downgrading
also holds for scheduleT, but non-starvation does not hold for scheduleS.



Downgrading // scheduleS

��
Non-Starvation // scheduleT

Fig. 5. First Refinement Diagram

3.3 Data Refinement and the Lottery Scheduler

It is not sufficient to have an elegant specification, unless that specification can be
practically implemented. Therefore we implement our randomised lattice sched-
uler as a lottery scheduler. We only require the assumption of randomness for a
single operation: drawing a ticket.

We extend the abstract state with a lottery for each domain. Every possible
successor domain holds a certain set of tickets, given by the function ‘lottery’.
To transition, the scheduler draws a ticket (32 word) and consults the table to
choose a successor. To emphasise that the probabilistic component can be iso-
lated, and to demonstrate compatibility with our existing framework, we divide
the implementation into a core, in the nondeterministic state monad [CKS08],
which is then lifted into pGCL using the Exec operator, allowing us to employ
probabilistic choice. Both scheduleC and scheduleM operate on the same state
space: stateC. The syntax rLx := yM is an Isabelle record update, assigning value
y to field x of record r.

record domain = lottery :: 32 word⇒ dom_id
record stateC = current_domain :: dom_id

domains :: dom_id⇒ domain
scheduleM t = do c← gets current_domain

dl← gets domains
let n = lottery (dl c) t in
modify (λs. sLcurrent_domain := nM)

od
scheduleC = t from (λs. UNIV) at 2−32 in

Exec (scheduleM t)

Having moved to a new state space, we cannot have direct program refine-
ment between scheduleT and scheduleC. Noting, however, that the abstract state
can be recovered from the concrete by projection, we instead have (projective)
probabilistic data refinement:

Definition 2 (Probabilistic Data Refinement). Program b, on state type σ,
refines program a, state τ , given precondition G : σ → Bool and under projection



θ : σ → τ , written a vG,θ b, exactly when any expectation entailment on a implies
the same for b, on the projected state and with a guarded pre-expectation:

P 
 wp a Q
«G»&& (P ◦ θ) 
 wp b (Q ◦ θ)

Lemma 4. Let ‖S‖ be the cardinal measure (element count) of set S.
Under condition LR, that ‘lottery’ reflects the transition matrix,

T (c, n) = 2−32‖{t. lottery (domains s c) t = n}‖

then under projection φ, which extracts the current domain,

current_domain (φ s) = current_domain s

scheduleC is a data refinement of scheduleT:

scheduleT vLR,φ scheduleC

3.4 Probabilistic Correspondence

Downgrading // scheduleS

��
Non-Starvation // scheduleT

φ,LR
��

scheduleC

Fig. 6. Second Refinement Diagram

As mentioned in Section 3.2, scheduleT is maximal in the refinement order,
and thus any refinement is an equivalence. This is probabilistic correspondence:

Definition 3 (Probabilistic Correspondence). Programs a and b are said
to be in probabilistic correspondence, pcorres θ G a b, given condition G and
under projection θ if, for any post-expectation Q, the guarded pre-expectations
coincide:

«G»&& (wp a Q ◦ θ) = «G»&& wp b (Q ◦ θ)



Probabilistic correspondence is guarded equality on distributions: From an
initial state satisfying G, a and b establish Q with equal probability. The advan-
tage of detouring via refinement, rather than directly showing correspondence,
is that the proof is simpler; the next result follows directly from Lemma 4:

Lemma 5. The specifications scheduleT and scheduleC correspond given condi-
tion LR and under projection φ:

pcorres φ LR scheduleT scheduleC

This extends Figure 5 to Figure 6, with correspondence indicated by the
double arrow. As correspondence implies refinement, both downgrading and non-
starvation hold for scheduleC, as implied by the arrows. Properties represented
by a single dotted arrow (e.g. downgrading), are preserved by both refinement
(single arrow) and correspondence (double arrow).

3.5 Proof Reuse: Composing with seL4

Downgrading // scheduleS

��
Non-Starvation // scheduleT

φ,LR
��

callKernelD

��

stepKernel; ; scheduleC scheduleC
φ,LR

ks

callKernelH

��
callKernelC

Fig. 7. Composed Refinement Diagram

Our argument for the feasibility of this approach rests on the compatibility
of probabilistic correspondence with its non-probabilistic equivalent at the heart
of the L4.verified proof. We have previously demonstrated the ease with which
monadic specifications, in the style of seL4, can be re-used in a probabilistic
setting [Coc12], automatically lifting Hoare triples to probabilistic predicate en-
tailment relations. With the following result we go further, and lift the bulk of
the refinement stack. The predicate corres_underlying in the following lemma



is the fundamental definition which underlies the refinement results at all levels
of the L4.verified proof [CKS08]. Here, we need only note that this is the form
of the top-level theorem3.

Lemma 6 (Lifting Correspondence). Given correspondence between monadic
programs M and M ′, with precondition G and projective state relation φ,

corres_underlying {(s, s′). s = φ s′} True rrel G (G ◦ φ) M M ′

where M does not fail given G,

no_fail G M

and neither diverges without failing,

empty_fail M empty_fail M ′

and that M is deterministic on the image of the projection,

∀s. ∃(r, s′). M (φ s) = {(False, (r, s′))}

then we have probabilistic correspondence between their lifted counterparts:

pcorres φ (G ◦ φ) (Exec M) (Exec M ′)

Note that the final assumption is exactly the determinism4 condition that we
previously established for scheduleT, restricted to the components of interest.
M is free to behave nondeterministically on components which are masked by
the projection.

Thus we may compose our probabilistic results with the deterministic levels
of the L4.verified proof (the executable, or more recent deterministic abstract
[MM12], specification). For the problem at hand, it is only necessary to make a
few assumptions on the kernel:
3 Briefly, corres_underlying srel nf rrel G G′ m m′ is defined as:

∀(s, s′) ∈ srel. G s ∧G′ s′ → (∀(r′, t′) ∈ fst (m′ s′).
∃(r, t) ∈ fst (m s). (t, t′) ∈ srel ∧ rrel r r′ ∧ (nf→ ¬snd (m′ s′)))

Where guards G and G′ hold on initial states s and s′ satisfying state relation
srel, for any pair of (result, final state) obtained by executing m′, there exists a
corresponding pair obtainable by executing m. If the non-failure flag, nf is set, then
the predicate additionally asserts that m′ does not fail.

We use the predicate with a projective relation derived from φ, no failure, an
arbitrary result relation, and a concrete guard which is the anti-projection of the
abstract guard (G ◦ φ).

4 Determinism gives us correspondence, rather than just refinement. Consider monads
A and A′, and variable x : N, preserved by projection φA. Let A s be nondeterminis-
tic, giving eithersLx := x s+ 1M or sLx := x s+ 2M, while A′ s is deterministic, giving
sLx := x s+ 2M. All behaviours of A′ are included in A, and thus corres_underlying
holds. However, wp A x = λs. x s + 1 whereas wp A′ (x ◦ φA) = λs. x s + 2: a re-
finement, but not correspondence. As previously mentioned, if A were deterministic
then by maximality, this refinement would be correspondence.



Lemma 7. If the kernel preserves the lottery relation,

{|LR|} stepKernel {|λ_. LR|}

and the current domain,

{|λs. CD s = d|} stepKernel {|λ_ s. CD s = d|}

and is total,
no_fail > stepKernel empty_fail stepKernel

then with the concrete scheduler, it refines the transition scheduler:

scheduleT vLR,φ stepKernel;;scheduleC

With this (again using refinement to show correspondence), Figure 6 becomes
Figure 7, now including the lifted kernel. The L4.verified refinement stack is
depicted on the left to indicate how the results would compose, to take our
result down to the real, executable kernel. Here callKernelD is the deterministic
refinement of original abstract specification of seL4, callKernelH is the executable
model derived from the Haskell prototype, and callKernelC is the concrete model,
comprising the final C and assembly language implementation

So far, we have only shown that our results are compatible: we do not yet
have a mechanised proof. The remaining results are the first two assumptions
of Lemma 7, which will hold by construction as the existing kernel clearly can-
not modify the additional scheduler state, and the fact that the state relation
is projective: that is, that the abstract state is uniquely recoverable from the
concrete state. This is the intended behaviour of the state relation, and we have
no reason to suspect that this result will not hold.

3.6 Non-leakage with a Concrete Machine Model

Our ultimate goal is to show the absence of information leakage via shared state
(specifically the processor cache), and so we extend our scheduler with a simple
hardware model. We model a private state per domain (memory), and a single
shared state (cache):

record (sh, pr) machine = private :: dom_id⇒ pr

shared :: sh

The action of a domain is modelled by the underspecified function runDom ::
sh × pr ⇒ sh × pr, acting on both the current domain’s private state and the
shared state. Only the action of domain ⊥ is specified, and then only on the
shared state, resetting it.

The model exposes the essential information-flow characteristics of the cache
channel, as illustrated by Figure 8. Initially, the states associated with domain
3 (black) and 2 (grey) are isolated. After a single step, domain 3’s influence
propagates to the cache (S), but as yet no other private state has been affected.



2

3

2

1

S

3

3

2

1

S

3

2

1

S

Fig. 8. A schematic depiction of flow from 3 to 2, via shared state S

It is only after the second step that influence propagates to 2’s private state, it
and the cache now being influenced by both 2 and 3’s initial states. As this mixing
of private states cannot occur in less than 2 steps, and may take an unbounded
time (2’s state cannot be influenced until 2 is scheduled), we cannot formulate a
one-step security property. Instead we have a trace property, enforcing that after
any number of steps, the distribution of outcomes visible to a low observer is
independent of any initial high state, a form of probabilistic non-leakage [vO04]:

Lemma 8 (Non-leakage). If the clearance of domain h is not entirely con-
tained within that of domain l,

clearance h * clearance l

then any function of the state after execution, which depends only on elements
within l’s clearance,

Q ◦mask l

is invariant under modifications to h’s private state (as represented by replace):

wp (runDom;;scheduleT)n (Q ◦mask) =
(wp (runDom;;scheduleT)n (Q ◦mask)) ◦ (replace h p)

We also have correspondence between scheduleT and runDom;;scheduleC:

Lemma 9. Assuming that the lottery relation LR holds, then under projection
ψ, which drops the machine state, we have the correspondence:

pcorres LR ψ (scheduleT) (runDom;;scheduleT)

and thus by compositionality,

pcorres LR (ψ ◦ φ) (scheduleT) (runDom;;scheduleC)



Downgrading // scheduleS

��

Non-Leakage

��
Non-Starvation // scheduleT

φ,LR

��

ψ,LR

+3 runDom ;; scheduleT

φ,LR

��
stepKernel ;; scheduleC scheduleC

φ,LR

ks
ψ,LR

+3 runDom ;; scheduleC

Fig. 9. The Complete Refinement Diagram

Therefore, finally, we have all three results: downgrading, non-starvation
and non-leakage, on the concrete lottery scheduler composed with the hard-
ware model, as depicted in Figure 9. Here, non-leakage is shown using a double
dotted arrow to emphasise that it is only preserved by correspondence, and not
by refinement.

4 Conclusions

We have presented a hybrid probabilistic lattice-lottery scheduler, which allows
efficient mitigation of the cache channel, while simultaneously guaranteeing non-
starvation. Working in pGCL, our system is produced by iterative refinement,
supplemented by mechanical proof. This demonstrates that given adequate tool
support (namely Isabelle/HOL and our mechanisation of pGCL), refinement-
driven development and verification of realistic probabilistic systems software is
no more difficult than the existing non-probabilistic case. We have shown that
our refinement framework is compatible with that of the L4.verified project,
and set out the steps necessary to combine this work with a system such as
seL4, giving a mechanical proof down to a real system of probabilistic top-level
properties. Above all, we argue that verifying probabilistic security properties
on realistic systems software is entirely feasible with current technology.

5 Ongoing & Future Work

We have established non-starvation in Lemma 3 as a property of finite traces
(of length at least 8). While weaker than this, it would be nice to derive the
standard formulation of non-starvation: that any given domain will eventually
be scheduled, or ∀d. ♦(current_domain = d) in the syntax of a boolean modal
logic. In our case, of course, the result must necessarily be probabilistic: that it is
’almost certain’ that any domain is eventually scheduled. We have already par-
tially mechanised the quantitative temporal logic, qTL, of Morgan and McIver



[MM99], which allows us to express this result as ∀d. ♦(current_domain =
d) = 1, with boolean predicates generalised to real-valued expectations, as for
pGCL. We have so far managed to feed our unmodified pGCL results into qTL,
and anticipate that these results will appear in a forthcoming work.

Progress on the assumptions of Lemma 7, required for the connection to seL4,
is ongoing. In a separate work, currently under submission, our colleagues Daum
& Billing have shown that the seL4 state relation is indeed projective, satisfying
the implicit assumption. Formally proving the explicit assumptions (lottery rela-
tion and current domain preservation) presents no theoretical challenges, simply
requiring a large but trivial proof. Integrating the projectivity result should be
similarly straightforward. The more interesting question is what form that the
final top-level statement should take to cleanly integrate the probabilistic and
classical properties of seL4, and is the subject of ongoing research.

Acknowledgements NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Centre of Ex-
cellence program.

The author is also indebted to the anonymous reviewers for their insightful
and constructive feedback, and to Toby Murray and Matthias Daum for review-
ing draft copies of this paper.

References

BBCL12. Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna.
Cache-leakage resilient os isolation in an idealized model of virtualization.
In 25th Comp. Security Foundations WS, pages 186–197, 2012. 2

Ber04. D.J. Bernstein. Cache-timing attacks on AES, 2004. 2
CKS08. David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state

monads and scalable refinement. In Otmane Ait Mohamed, César Muñoz,
and Sofiène Tahar, editors, Proceedings of the 21st International Confer-
ence on Theorem Proving in Higher Order Logics, volume 5170 of Lecture
Notes in Computer Science, pages 167–182, Montreal, Canada, Aug 2008.
Springer-Verlag. 9, 12

CM07. Han Chen and Pasquale Malacaria. Quantitative analysis of leakage for
multi-threaded programs. In Proceedings of the 2007 workshop on Pro-
gramming languages and analysis for security, PLAS ’07, pages 31–40, New
York, NY, USA, 2007. ACM. 2

Coc12. David Cock. Verifying probabilistic correctness in isabelle with pGCL. In
Systems Software Verification, Sydney, Australia, pp. 10, November, 2012.,
11 2012. 1, 2, 11

Den76. Dorothy. E. Denning. A lattice model of secure information flow. CACM,
19:236–242, 1976. 2, 4

Dij75. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. CACM, 18(8):453–457, Aug 1975. 3

DoD86. US Department of Defence. Trusted Computer System Evaluation Criteria,
1986. DoD 5200.28-STD. 2



FS03. Colin Fidge and Carron Shankland. But what if i don’t want to wait
forever? Formal Aspects of Computing, 14:281–294, 2003. 1

GKV11. Xun Gong, N. Kiyavash, and P. Venkitasubramaniam. Information theo-
retic analysis of side channel information leakage in FCFS schedulers. In
Information Theory Proceedings (ISIT), 2011 IEEE International Sympo-
sium on, pages 1255 –1259, Aug 2011. 2

HMM05. Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded
commands mechanized in HOL. Theoretical Computer Science, 346(1):96
– 112, 2005. 1

HN12. Marieke Huisman and Tri Minh Ngo. Scheduler-specific confidentiality for
multi-threaded programs and its logic-based verification. In Proceedings of
the 2011 international conference on Formal Verification of Object-Oriented
Software, FoVeOOS’11, pages 178–195, Berlin, Heidelberg, 2012. Springer-
Verlag. 2

Hu92. W.M. Hu. Lattice scheduling and covert channels. In IEEE Symp. Security
& Privacy, pages 52–61, 1992. 2, 5

KEH+09. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, pages 207–220, Big Sky, MT,
USA, Oct 2009. ACM. 1, 2

KZB+91. P.A. Karger, M.E. Zurko, D.W. Bonin, A.H. Mason, and C.E. Kahn. A
retrospective on the VAX VMM security kernel. Trans. Softw. Engin.,
17(11):1147–1165, Nov 1991. 2

MM99. Carroll Morgan and A. K. Mciver. An expectation-based model for proba-
bilistic temporal logic. Logic Journal of the IGPL, 7:779–804, 1999. 16

MM04. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Springer, 2004. 1, 2, 3

MM12. Daniel Matichuk and Toby Murray. Extensible specifications for automatic
re-use of specifications and proofs. In Proceedings of the 10th International
Conference on Software Engineering and Formal Methods, volume 7504 of
Lecture Notes in Computer Science, pages 333–341, Oct 2012. 12

MMB+12. Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Ger-
win Klein. Noninterference for operating system kernels. In Proceedings of
the 2nd International Conference on Certified Programs and Proofs, volume
7679 of Lecture Notes in Computer Science, pages 126–142. Springer-Verlag,
Dec 2012. 2

Per05. Colin Percival. Cache missing for fun and profit. In BSDCan 2005, 2005. 2
vO04. David von Oheimb. Information flow control revisited: Noninfluence =

noninterference + nonleakage. In Pierangela Samarati, Peter Ryan, Dieter
Gollmann, and Refik Molva, editors, 9th ESORICS, volume 3193 of LNCS,
pages 225–243, 2004. 14

WW94. Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
proportional-share resource management. In 1st OSDI, pages 1–11, Mon-
terey, CA, USA, Nov 1994. 2


	Practical Probability:Applying pGCL to Lattice Scheduling

