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Abstract. In this paper, we formally derive the probabilistic security
predicate (expectation) for a guessing attack against a system with side-
channel leakage, modelled in pGCL. Our principal theoretical contri-
bution is to link the process-oriented view, where attacker and system
execute particular model programs, and the information-theoretic view,
where the attacker solves an optimal-decoding problem, viewing the sys-
tem as a noisy channel. Our practical contribution is to illustrate the
selection of probabilistic loop invariants to verify such security proper-
ties, and the demonstration of a mechanical proof linking traditionally
distinct domains.

1 Introduction

This paper presents a formally-veri�ed proof of the optimality of a Bayesian
attack against an interactive system with side-channel leakage. This is an un-
surprising result from a security and machine-learning perspective, and would
typically just be assumed. Formalising the proof, however, requires e�ort. The
point, of course, is that the proof is straightforward exactly where it should be,
in the mechanical plugging-together of pieces, but interesting (or di�cult), only
where it must be, namely in choosing a model that faithfully represents our in-
tuitive understanding of the problem, and in the `creative moment' of choosing
an appropriate loop invariant. The result itself will be unsurprising to anybody
familiar with information theory or machine learning, but is the critical step
in linking this typically mathematical �eld with the more pragmatic world of
concrete operational semantics. As we will brie�y detail in the �nal section of
this paper, and as we have presented elsewhere[Cock, 2014], we can then apply
the tools of one domain to the other, to tease out deeper theoretical results.

The contribution of this paper is a worked mechanical proof that conducting
an optimal guessing attack, in the presence of side-channel leakage, reduces to an
optimal decision problem on a corresponding noisy channel, expressed in purely
probabilistic terms, with all artefacts of the operational model eliminated. This
model, in turn, is carefully selected to make the connection to the intuitive secu-
rity property as clear as possible, but also �exible enough to incorporate realistic-
scale systems in the manner demonstrated in our previous work[Cock, 2013]. To
reiterate, a straightforward proof of such a cross-cutting result, requiring deep
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thought only at those points where it really should, demonstrates that the in-
frastructure of mechanisation is mature enough to allow us to transfer a security
result from a detailed, fully-implemented system, through a probabilistic oper-
ational semantics[Cock, 2012], to a fully probabilistic or information-theoretic
setting.

1.1 Side Channels and Guessing Attacks

The context of this work is our ongoing project[Cock, 2014] to demonstrate
that we can transfer probabilistic information-�ow properties from an abstract
information-theoretic model, down to a concrete veri�ed implementation, lever-
aging an existing correctness proof (for example that of the seL4 microker-
nel[Klein et al., 2009]). Previously[Cock, 2013], we demonstrated that the top-
level result of that re�nement proof could be embedded in the probabilistic lan-
guage pGCL[McIver and Morgan, 2004], and lemmas about the abstract speci�-
cation lifted into a probabilistic context. We now demonstrate that we can take
one further step, and lift a probabilistic security property away from implemen-
tation details entirely, and reason solely at an abstract level.

The reason that this approach works, and that we are able to claim that it
is applied to a real system is precisely the embedding result just mentioned. We
were able to take the top-level speci�cation of seL4, and embed it into pGCL
in such a way that annotations of the original speci�cation are preserved, and
the re�nement orders correspond. Therefore, any re�nement-sound result on the
probabilistic speci�cation (such as that shown in this paper), is preserved by the
full seL4 re�nement stack and therefore applies to the low-level kernel imple-
mentation.

This security property is derived from our threat model : A guessing attack,
against a system with a side channel. We de�ne a side channel to be any infor-
mation provided by the system to a client that a) depends on a secret, and b) is
not allowed by the system's speci�cation.

As a motivating example, consider an authentication system in which the
client supplies some shared secret (for example a password) to the system in
order to prove its identity. The system must compare the supplied secret to
its stored version, and then either grant or deny access. Such a system has
some degree of unavoidable leakage: a malicious client can guess secrets one-
by-one and (assuming the set is �nite), must eventually get the right one. In
practice, we hope that the space of secrets is su�ciently large that such an attack
is impractical. More interesting is whether the system leaks anything beyond
this unavoidable amount, and to what extent any such additional side-channel
leakage increases the vulnerability of the system (or the attacker's chance of
success).

This leakage might be in the form of variable runtime, power consumption,
radiation, or any other property not covered by the system's speci�cation. We
assume that continuous channel values are measured with some �nite precision by
the attacker, and are thus e�ectively quantised into some �nite set of outputs. A
common property of such side-channel outputs is that they are stochastic: there
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is no functional relation between the secret and the observed side-channel value.
There may, however, exist some probabilistic relationship.

If there were a functional relation between the secret, S ∈ S, and observation
o ∈ O, i.e. we are able to �nd some F :: S⇒ O⇒ bool, such that1

∀S. ∃!o. F S o

then we could proceed to reason about whether any information about S is
leaked by revealing o. In particular, if F is invariant under changing S, or
∀S S′ o. F S o = F S′ o, then we can say with con�dence that o gives no
information about S.

In the probabilistic case, in general, no such relation exists and we must be
satis�ed with a probabilistic relationship, the conditional probability P :: S ⇒
O⇒ [0, 1], where:

∀S.
∑
o

P S o = 1

Here, we interpret P S o as the probability of producing observation o, assuming
that the secret is S, for which we write P [o|S], or `the probability of o given S'.

Note that exactly the same invariance reasoning applies: if ∀S S′ o. P S o =
P S′ o i.e. the distribution of outcomes does not depend on S, then observing
o tells the attacker nothing about S. Note also that if we de�ne the boolean
embedding operator � · � :: (α⇒ bool)⇒ α⇒ [0, 1] by:

�Q�S = if Q S then 1 else 0

then we can view a functional relation (λS o. F S o) as the special case of a
probabilistic relation (λS o. �F S� o) which, for each S, assigns 100% probability
to exactly one o.

Given a non-injective relation, (or overlapping distributions), the attacker
will generally not be able to determine the secret with certainty: As long as at
least two secrets can produce the observed output with non-zero probability,
then both are possible. In the probabilistic case however (and in contrast to
the functional case), the attacker may be able to distinguish possible secrets by
likelihood. All other things being equal, if secret S produces the observed output
o with greater conditional probability than S′ i.e. P [o|S] > P [o|S′], then S is a
more likely candidate than S′.

Intuitively, if the attacker wants to use the secret that it has guessed, say to
attempt to authenticate, then it should use the one that it considers to be most
likely to be correct, in order to maximise its probability of success. The attacker
thus needs to order possible secrets by P [S|o], or the probability that the secret
is S, having observed o. In order to calculate this, however, the attacker needs
to know P [S], or the prior probability of a given secret: even if P [o|S] > P [o|S′],
and so S is more likely that S′ on the basis of the evidence, if the secret is
overwhelmingly more likely to be S′ than S in the �rst case (perhaps S′ is the

1 The Isabelle/HOL syntax ∃!x. P x reads `there exists a unique x satisfying P '
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password `12345'), then even given the evidence it may still be more likely than
S, albeit less so than initially.

The calculation of this inverse conditional probability P [S|o], from the for-
ward probability P [o|S], is made via Bayes' rule:

P [S|o] = P [o, S]

P [o]

This states that the probability of the hypothesis (that the secret is S) given
the evidence (that o was observed), is the joint probability of the hypothesis and
the evidence (P [o, S] = P [o|S]P [S]), divided by the probability of the evidence
(P [o], or the likelihood of observing o across all secrets).

Thus, as P [o] does not depend on S, the most likely secret (given that we
have observed o), is that which maximises P [o, S]. Selecting S so as to max-
imise P [o, S] in this way is known as the maximum a posteriori (MAP) rule:
selecting the hypothesis with the highest a posteriori (after the fact) probability.
In information theory, this is the optimal solution to the decoding problem: If
the conditional probability P [o|S] summarises the channel matrix of some noisy
channel, i.e. P [o|S] is the probability that symbol o is received, when S is trans-
mitted, the decoding problem is that faced by the receiver: to choose the most
likely transmitted symbol with which to decode each received symbol. This is
exactly analogous to the challenge facing an attacker attempting to guess the se-
cret given a side-channel observation, and both are solved optimally if the MAP
rule is observed.

There is one way, however, in which the attacker is not like the receiver on a
noisy channel: where the receiver is passively listening to the output, and making
a best-e�ort reconstruction of the input, the attacker is actively probing the
system, and has a second source of information in knowing whether it manages
to authenticate, or is refused. The additional leakage implies that the most-
likely secret (on the current evidence) is not necessarily the right one to guess.
In particular, the attacker should never guess the same thing twice: if it's been
refused once, it'll be refused again.

The criterion for success is also slightly di�erent. In the noisy channel exam-
ple, the decoder is successful if it chooses the correct S, and fails otherwise: there
are no second chances. In the authentication example, however, if the attacker
fails on its �rst guess (as it will most likely do), it can simply try again. Given
a �nite space of secrets therefore, an attacker that does not repeat guesses is
guaranteed to eventually guess correctly. The trick is, of course, that in a large
enough space, the chance of doing so in any practical timeframe is essentially
zero. The security measure is therefore not `the probability that the attacker
guesses correctly' (which is 100%, eventually), but `the probability that the at-
tacker guesses correctly in no more than n tries'. The parameter n can then be
set to an appropriate value for the system in question. For example, a login ser-
vice may allow only n attempts before blacklisting a particular client, in which
case we are asking for the probability that the system is compromised before the
countermeasure (blacklisting) kicks in.
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1.2 What the Proof Shows

The proof in Section 2 shows that what we expect, based on the informal rea-
soning above is, in fact, exactly what we get. As previously described, the bulk
of the proof is relatively mechanical but, thanks to mechanisation, rather short.
The interesting points, on which we will focus, are, again as already mentioned:
in establishing the faithfulness of the formal model to the above intuitive de-
scription, and in the choice of loop invariant, given which the rest of the result
follows straightforwardly.

The last thing we must mention before diving in is our two major assump-
tions, which are implicit in the above discussion, and in our choice of model, but
need to be stated explicitly:

� We assume that multiple observations are independent, given the secret.
The underlying assumption is that there is no lasting e�ect between two
invocations: the result of one probe has no in�uence on the result of the
next:

P (o, o′|S) = P (o|S)P (o′|S) (1)

This assumption could be lifted, for example by moving to an n-Markov
model, which should be expressible in the same framework, if this turns out
to be necessary in modelling a real system. For simplicity however, we start
with the `0-Markov', or independent case.

� We assume that the side-channel output (o) depends only on the secret (S),
and not on the attacker-supplied input.
This assumption is more important, and more limiting, than the �rst. It is
easy to construct systems where side-channel output depends on attacker-
supplied input, and in making this assumption, we are excluding them from
consideration. Such fully-dynamic attacks are the subject of current research,
and there is as yet no elegant information-theoretic interpretation. We must
thus be content for now with our partially-dynamic attack, where the at-
tacker's actions may be dynamically determined, but the conditional proba-
bilities are not.

1.3 An Overview of pGCL

The probabilistic imperative language pGCL is a descendent of GCL[Dijkstra,
1975], that incorporates both classical nondeterminism and probability. Common
primitives are provided, including:

� Sequential composition: a ; ; b, or �do a then b�.
� Variable update: x :=(λs. e s), or �update variable x, with the value of ex-
pression e in the current state, s�.

� Looping: do G −→ body od, or �execute body for as long as G (the guard)
holds�.

We may also make both classically nondeterministic and probabilistic choices,
which we present here in the form of choices over values:
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� Unconstrained (demonic) choice: any x, or �assign any value to variable x�.
� Constrained (probabilistic) choice: any x at (λs v. P s v), or �choose value
v, with probability P (which may depend on the state), and assign it to
variable x�.

� Constrained name binding (let expressions): bind n at (λs v. P s v) in a n.
This is almost equivalent to the previous operation, but instead of modifying
the state, simply binds the name n, which parameterises the program a. As
indicated, this is simply a probabilistic let expression.

Expectations In pGCL, we are no longer constrained to reasoning about
boolean predicates on the state (pre- and post-conditions, for example), but can
now consider any bounded, non-negative real-valued function (an expectation).
We can annotate program fragments just as in GCL:

Q  wp a R

Traditionally, we would read this predicate-entailment relation as a Hoare triple:
if Q holds initially, then R will hold after executing a. The literal meaning being
that Q implies the weakest precondition of R. In pGCL, both Q and R are
real-valued, and implication is replaced by pointwise comparison. The weakest
precondition is replaced by the weakest pre-expectation, such that the equation
now reads: Q is everywhere lower than the weakest preexpectation of R.

The action of programs is de�ned such that the weakest preexpectation of
R is the expected value of R after executing a, or the sum over all possible
states s of R s, weighted by the probability of ending in state s. If R is the
probability function associated with some predicate i.e. R is 1 whenever the
predicate holds, and 0 otherwise, then the weakest preexpectation is now the
probability, calculated in the initial state, that the predicate holds in the �nal
state (the expected value of a probability is itself a probability). In this case, the
above annotation states that the probability that the predicate holds �nally, if
we begin in state s is at least Q s. The embedding, in the above fashion, of a
predicate S as an expectation is written �S�.

Note that if Q s is 1, this reduces to the classical case: If Qs is true (has
probability 1), then Rs will hold (with probability at least2 1.).

Invariants A loop invariant in pGCL is an expectation that is preserved by
every iteration of the loop:

I ∗ �G�  wp body I

In the standard (non-probabilistic) setting, this states that if the invariant I and
guardG hold before the body executes, the invariant still holds afterwards. In our
probabilistic setting, we instead have that (as G is {0, 1}-valued), the probability
2 The healthiness conditions for the underlying semantics ensures that the probability
is in fact exactly one.
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of establishing I from any state where the loop body executes (satisfying G), is
at least I, or that I is a �xed point of the guarded loop body. This seemingly
weaker condition in fact su�ces to provide a full annotation of the loop (see
Lemma 1).

Further Information This summary of pGCL is incomplete, and covers only
those elements essential to the following exposition. For full details of the lan-
guage and its formal semantics, the interested reader is directed to McIver and
Morgan [2004], or for details of the mechanisation in Isabelle/HOL to Cock [2012,
2013].

2 The Proof

To model the system, we �x two distributions: the prior distribution on secrets,
P [S ], and the conditional distribution of observation-given-secret, P [o ′|S ]. We
assume throughout that these are valid distributions:

∑
S∈UNIV . P [S ] = 1 0 ≤ P [s]∑

o ′∈UNIV . P [o ′|S ] = 1 0 ≤ P [S |o ′]

We capture these, and the assumption that both the space of secrets and of
observations is �nite, in an Isabelle local theory (locale).

2.1 Modelling the Guessing Attack.

The state of the attack after some number of guesses (perhaps 0) is simply the list
of observations that the attacker has made so far, or O. In order to capture the
system's (probabilistic) choice of secret, and the attacker's choice of strategy,
however, we add two extra state components: S � the secret, and τ � the
strategy. The system state is thus represented by the following record3:

record ( ′s, ′o) attack-state =
S :: ′s
O :: ′o list
τ :: ′o list ⇒ ′s

The use of a record as the state type allows us to take advantage of the
�eld-update syntax introduced in our previous work[Cock, 2013].

We model the attack as a loop, with the attacker making one guess and one
observation per iteration. This speci�cation of a single iteration of the loop body
demonstrates the syntax for probabilistically binding a name (without updating
the state), and updating a single state component as if it were a variable:

3 A tuple with named �elds
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body ≡
bind obs at (λs. P [obs|S s]) in
O := (λs. obs · (O s))

The full attack has three phases: �rst the attacker decides on a strategy,
knowing both the distribution on secrets (P [S ]), and the conditional probability
of observations, given secrets (P [o ′|S ]). This is expressed as an unconstrained
nondeterministic choice (any), in a context where the names P-s and P-os are
already bound (these are the underlying constants corresponding to the syntax
P [S ] and P [o ′|S ]).

Next, the system generates a secret at random, according to the distribution
P [S ], expressed using a probabilistically-constrained choice4. It is critical that
this step comes after the �rst, as otherwise the attacker could simply choose a
strategy where τ s [] = S s. Semantically, we avoid this as the value S s is only
bound after the choice of τ .

Finally, starting with an empty observation list, the attacker probes the sys-
tem, collecting observations, until it terminates by guessing correctly. Note that
there is no guarantee that this loop terminates, for example if the attacker re-
peats an incorrect guess again and again. We will detail shortly how this a�ects
the formalisation, as it interacts with our de�nition of vulnerability.

The full attack is expressed in pGCL as follows:

attack =
any τ ;;
any S at (λs S . P [S ]) ;;
O:= [] ;;
do G −→ body od

where

G s = (τ s (O s) 6= S s)

We now need a security predicate: a judgement on states, declaring them ei-
ther secure or insecure. While a predicate in pGCL can take any (non-negative)
real value, we begin by cleanly distinguishing secure states. Our security predi-
cate is thus the embedding of a boolean predicate, and therefore takes only the
values 0 (for insecure) and 1 (for secure). Under the action of the above pro-
gram (interpreted as an expectation transformer), this 0,1-valued predicate (in
the postcondition) is transformed to its expected value: the value of the weakest
pre-expectation is (a lower bound on) the probability that we end in a secure
state. The complement is therefore the probability of compromise, if the system
begins in that state.

4 The alternatives in a probabilistic choice need not sum to 1: the remainder of the
probability is assigned to a nondeterministic choice among all possibilities. Thus,
any branch is taken with at least the speci�ed probability, and perhaps more. In this
way, nondeterministic choice is a special case of (sub-)probabilistic choice, where all
branches have probability 0.
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We consider the system to be secure in its �nal state if the attacker has
guessed correctly: τ s (O s) = S s, but has taken at least n incorrect guesses to
do so: n < |O s| ∧ (∀ i≤n. τ s (tail i (O s)) 6= S s).

The �rst of these conditions may appear odd, in that we are asserting that
the system is only secure if the attacker knows the secret! The technical reason
is that this term is the negation of the loop guard, G. The trick, and the reason
that we can safely include this conjunct, is that this predicate is only applied
to �nal states i.e those where the loop has terminated, which, by de�nition,
only occurs once the guard is invalidated. This term thus only ever appears in a
conjuction with the guard, leaving us with a term of the form � G � s ∗ � G �
s ∗ x, which simply collapses to � G � s ∗ x, the security predicate.

If the attacker has not yet guessed correctly, then our de�nition of secu-
rity depends not only on this predicate, but also on the interpretation on non-
terminating programs, which we will address shortly.

secure n s =
� λs. τ s (O s) = S s � s ∗
� λs. n < |O s| ∧ (∀ i≤n. τ s (tail i (O s)) 6= S s) � s

Finally, we de�ne vulnerability as the complement of security: the prior vul-
nerability is the probability that the system will end in an insecure state, given
at most (n) guesses. This is, of course, the complement of the probability that
the system ends in a secure state, thus the de�nition:

V n n = 1 − wlp attack (secure n) (SOME x . True)

The term SOME x . True is the Hilbert choice on the universal set. This
simply expresses our intention that the vulnerability does not depend on the
initial state.

Our de�nition of vulnerability is made in this slightly roundabout fashion
(`the complement of the likelihood of success', rather than simply `the likelihood
of failure'), in order to ensure that it is preserved under re�nement.

It is a well-recognised problem[Morgan, 2006] that many security properties
(for example noninterference) are not preserved under re�nement: a nondeter-
ministic choice is re�ned by any of its branches, in particular, a nondeterministic
choice of guess, is re�ned by the program that simply guesses the correct secret
on the �rst try. The same problem does not occur with probabilistic choice in
pGCL: it is already maximal in the re�nement order. This is clearer on inspecting
the destruction rule for re�nement:

prog v prog ′ nneg P

wp prog P s ≤ wp prog ′ P s

Here we see that for any non-negative expectation P, and any initial state s, a
re�nement assigns at least as high a value (or probability, in the case of a boolean
post-expectation) to the pre-expectation as the original program did. Thus, by
phrasing our postcondition as `the system is secure', any re�nement will only
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increase the probability of remaining secure, and thus decrease vulnerability.
If we instead chose `the system is compromised', then re�nement would work
against us: a re�nement could have greater vulnerability than its speci�cation.

The �nal wrinkle is that, while re�nement now acts in the `right' direc-
tion, nontermination doesn't. Under the strict semantics (wp), the weakest pre-
expectation of any postcondition in an initial state from which the program
diverges is 0�the probability of terminating and establishing the postcondition
is zero. The solution to this dilemma is to switch to the liberal semantics (wlp).
Here we ask for the probability of establishing the postcondition if terminat-
ing, rather then establishing it and terminating, as in the strict case. The only
di�erence between the two is in the treatment of non-terminating programs. In
particular the re�nement order on terminating programs is una�ected, and thus
our property is still preserved by re�nement. This choice also matches our in-
tuitive expectation: if the attacker never guesses the secret (either because it
repeats failed guesses, or because either party fails or enters an in�nite loop and
stops responding), the system is secure.

Having established that the model meets our expectations, we turn to the
second of the two instances in which cleverness is required: annotating the loop.

2.2 Annotating the Attack Loop

Annotating a probabilistic loop is very similar to annotating a classical loop:
Any invariant, combined with the guard, gives an annotation, via the loop rule:

Lemma 1. If the expectation I is an invariant of the loop do G −→ body od:

� G � s ∗ I s ≤ wlp body I s

then the following annotation holds for the loop itself:

I s ≤ wlp do G −→ body od (λs. � N G � s ∗ I s) s (2)

Proof. See McIver and Morgan [2004]

The veri�cation challenge is also the same: to �nd an invariant that is simul-
taneously strong enough to imply the desired postcondition, and weak enough to
be established by the given precondition. Here, we take a well-known tactic from
conventional invariant selection, and modify it to suit a probabilistic setting.

The trick is to split the invariant into a conjunction of two parts: a predicate
that represents the intended postcondition, as it would look in the current state,
and a separate predicate that `prunes' the set of future traces. The �rst half
is chosen so that it evaluates to the postcondition (in our case the security
predicate) in any terminating state, and the second to only allow traces that
preserve the �rst half. Given that we are manipulating probabilities, and not
truth values, we use a product rather than a conjunction. The result is equivalent,
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as a glance at the truth table will demonstrate5. The �rst `conjunct' (the portion
on the left-hand side of the product) is thus logically equivalent to our security
predicate.

The right conjunct is rather di�erent, however. Rather than choosing a pred-
icate that prunes the undesired traces, we instead take the weighted sum over
all traces (lists of observations), of the probability that the given trace preserves
the �rst conjunct. The weight assigned to a trace is in turn the probability of it
occurring which, by the assumption of independence (Equation 1), is simply the
product of the conditional probability of each observation, given the secret. We
thus construct our invariant as the sum over all possible futures, weighted by the
probability of establishing the postcondition.

Note that the syntax
∑

l [..n]. f l refers to the sum over all lists of length n,
and R b to the embedding of a boolean value as either 0 or 1:

I n s =
(
∏

i=0 ..min n |O s|. R (τ s (tail i (O s)) 6= S s))
∗ (

∑
ol [..n − |O s| ].∏
i = |O s| + 1 .. n.
P [((ol @ (O s)) ! (n−i))|(S s)]
∗ R (τ s (tail i (ol @ (O s))) 6= S s))

The proof that this is indeed an invariant is straightforward (with full details
of this and all other proofs available in the accompanying theory source).

Lemma 2. The expectation I is an invariant of the loop do G −→ body od i.e.:

� G � s ∗ I n s ≤ wlp body (I n) s

Proof. By unfolding. ut

Moreover, the combination of the invariant and the guard is precisely the
security predicate:

� N G � s ∗ I n s =
� λs. τ s (O s) = S s � s ∗
� λs. n < |O s| ∧ (∀ i≤n. τ s (tail i (O s)) 6= S s) � s

Thus, applying Lemma 1, we have:

I n s ≤ wlp do G −→ body od (secure n) s (3)

5 Note that multiplication is not the only choice that preserves boolean conjunction:
the `probabilistic conjunction' p .& q ≡ max 0 (p + q − 1 ) would also work, and
is used in other parts of the pGCL formalisation. The reason for instead choosing
multiplication is that we will later manipulate it algebraically to create a product of
probabilities.
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2.3 Annotating the Initialisation

The loop initialisation (assigning the empty list of observations) is annotated
just as in a classical setting, by instantiating the pre-expectation, and thus:

Lemma 3 (Initialisation).∑
ol [..n]. (

∏
i = 1 ..n. P [ol[n − i]|S s]) ∗

(
∏

i = 0 ..n. R (τ s (tail i ol) 6= S s))
≤ wlp (O := [] ;;

do G −→ body od)
(secure n) s

Proof. By instantiating Equation 3, we have:

R (τ s [] 6= S s) ∗
(
∑

ol [..n].
∏

i = 1 ..n. P [ol[n − i]|S s] ∗ R (τ s (tail i ol) 6= S s))
≤ wlp (O := [] ;;

do G −→ body od)
(secure n) s

whence we rearrange the pre-expectation by splitting the product and distributing
over the summation:

R (τ s [] 6= S s) ∗
(
∑

ol [..n].
∏

i = 1 ..n. P [ol[n − i]|S s] ∗ R (τ s (tail i ol) 6= S s)) =
(
∑

ol [..n]. (
∏

i = 1 ..n. P [ol[n − i]|S s]) ∗
(
∏

i = 0 ..n. R (τ s (tail i ol) 6= S s)))

at which point the result follows. ut

Making the choice over secrets, this becomes the weighted sum:∑
S . P [S ] ∗

(
∑

ol [..n]. (
∏

i = 1 ..n. P [ol[n − i]|S ]) ∗
(
∏

i = 0 ..n. R (τ s (tail i ol) 6= S )))

We manipulate this expression to produce a sum of probabilities, by �rst
de�ning the guess set (Γ ) of a strategy�the set of all guesses produced by
terminal sublists of the given list of observations:

σtr σ [] = [([], σ [])] |
σtr σ (o ′ · os) = (o ′ · os, σ (o ′ · os)) · σtr σ os
Γ σ ol = snd ` set (σtr σ ol)

We can now annotate the entire attack, including the nondeterministic choice
of strategy:

Lemma 4 (The Attack). We have:
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(
d
x . 1 − (

∑
ol [..n].

∑
S∈Γ x ol . P [ol ,S ])) ≤ wlp attack (secure n) s

Proof. We begin by noting that the pre-expectation of the choice over secrets:∑
S . P [S ] ∗

(
∑

ol [..n]. (
∏

i = 1 ..n. P [ol[n − i]|S ]) ∗
(
∏

i = 0 ..n. R (σ (tail i ol) 6= S )))

can be rewritten (by changing the order of summation, and distributing multipli-
cation) to:∑

ol [..n].
∑

S . P [S ] ∗ (
∏

i = 1 ..n. P [ol[n − i]|S ]) ∗
(
∏

i = 0 ..n. R (σ (tail i ol) 6= S ))

We then note that the innermost product is simply the joint probability of the
secret and the list of observations, and thus we have:∑

ol [..n].
∑

S . P [ol ,S ] ∗ (
∏

i = 0 ..n. R (σ (tail i ol) 6= S ))

Finally, we note that by the de�nition of Γ , if |ol | = n then

((
∏

i = 0 ..n. R (σ (tail i ol) 6= S )) = 0 ) = (S ∈ Γ σ ol)

and thus we have

1 − (
∑

ol [..n].
∑

S∈Γ σ ol . P [ol ,S ])

as the reworked precondition for the choice over secrets. The result then follows
from the de�nition of nondeterministic choice as the in�mum over the branches.

ut

2.4 The Top-Level Theorem

Our ultimate result then follows:

Theorem 1. The vulnerability of the system is bounded above by a sum over
the joint probability of the full list of observations, and the set of the attacker's
guesses for all initial sublists of observations (intermediate states), maximised
over possible choices of strategy.

V n n ≤ (
⊔
x .

∑
ol [..n].

∑
S∈Γ x ol . P [ol ,S ])

Proof. Follows from Lemma 4, the de�nition of V n and the algebraic properties
of the in�mum. ut

From this theorem, a number of facts are immediately apparent. First, as
every term in the sum is non-negative, vulnerability is (weakly) monotonic in
the size of the guess set. Thus (assuming that there are enough distinct secrets
for it to be possible), a strategy that repeats can be extended into a non-repeating
strategy (by replacing repeated guesses with fresh secrets), with at least as high a
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vulnerability. Thus we need only consider non-repeating strategies in calculating
the supremum.

Secondly, and more importantly, for any strategy, vulnerability is a sum of
the joint probability of a list of observations and a guess. It is thus obvious
that a strategy that maximises this, also maximises vulnerability. This is, of
course, the MAP strategy that we introduced in Section 1.2. In fact, the above
prohibition on repeating strategies can be rephrased in terms of distributions:
the optimal strategy maximises the joint probability over the distribution where
the probability of any secret that has already been guessed is set to zero (and
the rest scaled appropriately).

We have now come full circle, eliminating our operational model entirely, and
�nishing with a formulation solely in terms of the statistical properties of the
system that, as we see, matches our expectations. Importantly, we didn't assume
anything about the optimality of the non-repeating MAP strategy: it fell out as
a consequence of the model.

3 Using the Result

We conclude with a sketch to illustrate how this result �ts into the overall theory,
and provides the connection between the operational and information-theoretic
models.

As indicated at the end of Section 2, the pen-and-paper proof picks up at
Theorem 1, establishing the optimality of the MAP strategy. Given this, we are
able to establish a number of results extant in the literature. For example V1,
or the chance of compromise in a single guess, is simply the probability of the
most likely secret:

V1 = max
S

P [[ ], S]

= max
S

P [S]

This is closely related to the min-entropy measure (H∞), which has recently
begun to supplant Shannon entropy in the formal analysis of vulnerability to
information leakage[Smith, 2009]. Speci�cally:

H∞(P ) = − log2(max
S

P [S]) = − log2 V1

From this, we synthesise a leakage measure, or a bound on how vulnerability
changes over time, by analogy with the min-leakage: L∞ = H∞(P1)−H∞(P2).
We estimate the rate of leakage by the ratio of the vulnerability given 2 guesses,
to that given only 1. This multiplicative measure becomes additive, once we
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rephrase it in terms of entropy:

L =
V2
V1

log2 L = log2
V2
V1

= log2 V2 − log2 V1

= H∞(P1)−H∞(P2)

Ultimately, we extend the model to allow nondeterministic choice not only
over strategies, but also over the distributions P [S] and P [o|S] themselves, taken
from two sets, QS and QoS respectively. Thanks to our de�nition of vulnerability,
this is equivalent to asking for the greatest (strictly, supremum) vulnerability
over all distributions in QS and QoS .

A particularly interesting case occurs when QS is the set of all distributions
of Shannon entropy H1, and QoS the set of all conditional distributions with
channel capacity C. We thus express the worst case vulnerability, given that
we only know the Shannon entropy of the distribution (this is not generally
straightforward to calculate, see Smith [2009]). Moreover, on average (assuming
that the space of secrets is large enough that the e�ect of the individual yes/no
answers is small), the entropy remaining after a single guess is just H − C. We
thus iterate the model, recalculating Vn, this time setting QS to the set of all
distributions of entropy H − C.

Finally, consider what happens to the vulnerability as we vary QS . As the
size of the set increases, the supremum is taken over more possibilities, and thus
we should expect the vulnerability to increase. Likewise, smaller sets should give
lower vulnerability. This is indeed precisely what we see as, from the semantics
of nondeterminism in pGCL, the choice over some S ⊆ T is a re�nement of the
choice over T . Recall that a re�nement assigns a higher value to every state
than the original program and thus, as it appears negated in our de�nition of
vulnerability, the choice over a smaller set gives a lower vulnerability, and vice
versa.

We thus see that the order on the vulnerability bounds is determined by the
subset order on the set of distributions. In particular, this gives us a complete
lattice of bounds, since V1 ∅ = 0 (by de�nition) and V1 > = 1 (this includes
every distribution that assigns 100% probability to a single secret, which the
attacker will then guess with certainty). We thus link the re�nement order on
our operational models, with a (dual) order on this complete lattice of bounds.
For the full derivation see Cock [2014].

4 Related Work

This work draws on our own previous work on the mechanisation of probabilistic
reasoning, together with results in both the programming-language semantics
and the security literature.
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We build on our own previous work in mechanising[Cock, 2012] the pGCL
semantics of McIver and Morgan [2004], and in demonstrating the feasibility of
carrying probabilistic results down to real systems by incorporating large existing
proof results[Cock, 2013, Klein et al., 2009]. We extend this by demonstrating
that we can take the approach one step further: into the domain of information
theory.

The concept of entropy, and the solution to the optimal decoding problem
both date to the earliest years of information theory[Shannon, 1948], while the
shift to min-entropy in the security domain largely follows the insight of Smith
[2009] that the single-guess vulnerability of a distribution is only loosely con-
nected to its Shannon entropy. The further generalisation of this idea is a subject
of active research[Alvim et al., 2012, Espinoza and Smith, 2013, McIver et al.,
2010]. Our own previous work include the rigorous evaluation of the guessing
attack as a threat model[Cock, 2014].
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