
Running the Manual: An Approach to High-Assurance
Microkernel Development

Philip Derrin Kevin Elphinstone Gerwin Klein David Cock
National ICT Australia, and

School of Computer Science and Engineering,
University of New South Wales

{philip.derrin|kevin.elphinstone|gerwin.klein|david.cock}@nicta.com.au

Manuel M. T. Chakravarty
School of Computer Science and

Engineering
University of New South Wales

chak@cse.unsw.edu.au

Abstract
We propose a development methodology for designing and proto-
typing high assurance microkernels, and describe our application of
it. The methodology is based on rapid prototyping and iterative re-
finement of the microkernel in a functional programming language.
The prototype provides a precise semi-formal model, which is also
combined with a machine simulator to form a reference implemen-
tation capable of executing real user-level software, to obtain accu-
rate feedback on the suitability of the kernel API during develop-
ment phases. We extract from the prototype a machine-checkable
formal specification in higher-order logic, which may be used to
verify properties of the design, and also results in corrections to
the design without the need for full verification. We found the ap-
proach leads to productive, highly iterative development where for-
mal modelling, semi-formal design and prototyping, and end use
all contribute to a more mature final design in a shorter period of
time.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability—Verification; D.3.2 [Programming Languages]: Lan-
guage Classifications—Applicative (functional) languages; I.6.3
[Simulation and Modelling]: Applications

General Terms Languages, Design, Documentation, Verification

Keywords Operating systems, Haskell, rapid prototyping, exe-
cutable specification, Isabelle/HOL, monads, formalisation, veri-
fication

1. Introduction
The development of modern high-end microkernels for embedded
systems suffers from opposing requirements: the need for high-
performance and the demand for high-assurance. On one hand, con-
straints on physical resources (time, speed, and power) require tight
control of clock cycles and memory footprint. For example, it is
common to hand-tune data-structure layouts and locations to min-
imise the cache footprint of common operations. Ultimately, these
constraints necessitate the use of systems programming languages,
such as C and C++. On the other hand, demands for high-assurance

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was
published in Proceedings of the 2006 ACM SIGPLAN workshop on Haskell.
http://doi.acm.org/10.1145/1159842.1159850

Haskell’06 September 17, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-489-8/06/0009. . . $5.00.

(safety and security) require a rigorous specification of the kernel
API and its security and safety properties as well as guarantees that
the implementation meets this specification. Ultimately, these de-
mands necessitate the use of both formal specifications and theo-
rem provers. Unfortunately, systems programming languages and
rigorous formal methods are far apart, leading to slow development
and to compromises in performance and safety. A development cy-
cle that includes both formal modelling and a C implementation of
the model in each iteration is slow. However, without an implemen-
tation, few insights can be drawn about the potential performance
of a large complex model. Whether a data structure is five bytes or
four makes little difference to correctness, but can make a dramatic
difference to performance.

To combine high performance and high assurance, kernel API
development has to rapidly iterate through many cycles, while
progressively refining both the specification and implementation.
Moreover, the kernel prototype must be able to execute real user-
level code to evaluate the practical adequacy of the design.

In this paper, we propose a novel development model that relies
on functional programming to implement an executable specifica-
tion of the kernel API. This specification is: (a) at a high level en-
abling fast turn around, (b) able to execute real user-code without
getting bogged down in hardware details, (c) amenable to semi-
automatic extraction of a formal specification for Isabelle/HOL,
and (d) the basis for a final implementation of the kernel in C/C++.

Previous experience with formally verifying a portion of the
L4Ka::Pistachio microkernel [20] convinced us that it is desirable
to completely formally specify a kernel interface prior to its refine-
ment into a complete implementation [19,30]. After all, embarking
on a resource-intensive complete kernel implementation, that is dif-
ficult to adapt, prior to determining the required formal properties
of the system is at best risky. Additionally, reverse-engineering a
formal specification from a real implementation is time consum-
ing.

The recent House and Osker kernels [12] (in Haskell) and the
Hello kernel [9] (in Standard ML) showed that functional lan-
guages are sufficiently mature for kernel development on bare
metal. However, independent of the implementation language, bare
metal implementations require a lot of attention to hardware details
(such as bootstrapping, page table management, and interrupt han-
dling), and time consuming debugging in a hostile environment,
which distracts from the goals of API design and formalisation.
Also, implementations in high-level languages are limited in their
ability to implement, rather than model, the desired behaviour of
the kernel. For example, the seL4 kernel never dynamically allo-
cates memory, but when using Haskell on bare metal, it is impossi-
ble to avoid allocating space in the Haskell runtime’s heap.

Hence, we propose the following alternative approach. We de-
velop an abstract model of how the kernel would function in a
complete system in a functional language (specifically Haskell).
The kernel model responds to a specific set of events, and manip-
ulates both its internal state and the state of the underlying sim-
plified hardware model in response to those events. We then cou-
ple this model with a machine simulator, allowing it to respond to
the actions of real user-level software in a manner that emulates
a real implementation of the kernel. During our development of
the seL4 microkernel, this method enabled us to rapidly develop
a testable prototype of the new kernel’s interface, while avoiding
hardware-specific issues until we were prepared to handle them.
Thus, we could construct user-level systems using the interface in
parallel with the development of the kernel API specification. We
used the Haskell code as informal API documentation and to semi-
automatically derive a formal specification.

Our proposed development approach includes the construction
of a high-performance implementation in C. However, this final
phase of our approach remains as future work. In the remainder
of the paper, we focus on our approach to rapid prototyping and
semi-formal modelling of microkernel APIs in Haskell, and their
subsequent formal modelling in Isabelle/HOL.

In summary, this paper makes the following contributions:

• a method for modelling an event-driven operating system kernel
in Haskell (Sect. 2 and Sect. 3);

• a method of modelling the contents of a machine’s physical
memory without translating those contents to byte streams
(Sect. 3.2);

• an interface between an event-driven kernel model in a func-
tional language and an external CPU simulator, allowing ex-
ecution of realistic user-level code inside the kernel model
(Sect. 4);

• a method for rapidly formalising monad-based Haskell code in
Isabelle/HOL (Sect. 5); and

• experiences applying the above techniques in the design of a
new microkernel (Sect. 6).

We discuss related work in more detail in Sect. 7.

2. Specifying microkernels in Haskell
Prior to describing the issues in specifying an operating system
in Haskell, we first introduce the class of operating systems we
are working with to convey the scope of the problem. seL4 is an
evolution of second generation microkernels [23]. The microkernel
is relatively small (less than 10,000 lines of C code), and aims
to provide policy free mechanisms for the flexible construction
of more complex operating systems with the microkernel as the
foundation [21]. Traditional operating system functionality (such
as a file system) is implemented outside the microkernel as user-
level servers. Device drivers also exist as servers outside the kernel,
with the microkernel only providing a mechanism for the drivers to
receive hardware-generated interrupts.

The microkernel provides the mechanisms for the creation and
management of address spaces and threads, and inter-thread com-
munication. Generally, mechanisms are only included in the mi-
crokernel when the desired security properties of the system would
be impossible to enforce otherwise. On rare occasions, additional
mechanisms are included in the pursuit of performance.

The abstract model of the provided mechanisms aims to be as
hardware independent as possible to aid in portability of software
between microkernels implemented on different architectures. This
aim encourages an approach of designing and implementing a new
kernel in a hardware-independent manner to focus on modelling

the mechanisms themselves. While an interface to the underlying
hardware will be required eventually, the need to deal with the
complexity of the underlying hardware might be avoided for a
significant fraction of the work.

Another factor that influences the development approach is the
desire for an atomic kernel API [8]. An atomic kernel API is an
API in which all system calls appear to complete atomically from
the perspective of applications. All system calls return promptly
without being delayed by the state of other applications, and also
return the correct state. As an illustrative example, promptness and
correctness become an issue when a thread is non-interruptibly
blocked inside the kernel, and is then operated on by a second
thread. Blocking the second thread until the first is in a user-visible
state would not be prompt, and delivering the last-known good state
of the first thread would not be correct. Long running system calls
can be supported by breaking them up into user-visible sequences
of atomic operations.

An atomic API is desirable as it enables an interrupt style ker-
nel execution model (also termed event style). Interrupt style ker-
nels only have a single thread of control when executing within the
kernel, and are implementable using a single kernel stack, indepen-
dent of the number of threads currently allocated in the system. A
process style kernel execution model, where a kernel stack is allo-
cated per thread, would significantly increase the amount of phys-
ical memory required in a microkernel-based system. Reducing
memory consumption is an important issue in memory-constrained
embedded systems.

As a consequence of requiring an interrupt style kernel, the de-
velopment methodology does not need to support modelling multi-
threading in the kernel execution environment. Also, the limited
ability of formal methods to scale in the presence of concurrency
discouraged us from exploring alternative process style execution
environments for the kernel. However, our approach could theoreti-
cally be applied to a multi-threaded kernel. Hallgren et al. describe
approaches to multi-threading support for their Haskell-based ker-
nel [12].

There are several potential approaches to the design and specifi-
cation of a new microkernel within the family of kernels described
above:

• A natural-language specification is easily written and read, but
is prone to inadvertent ambiguity and incompleteness, and often
fails to expose design issues that may have a significant impact
on performance, usability, and ease of implementation of the
design.

• Formal specification at an abstract level avoids ambiguity, but
still may not expose issues affecting performance and ease
of implementation of the design until the refinement stage.
This is a particular problem for systems software, which is
performance-critical and must operate in a relatively con-
strained environment. Also, it is difficult to evaluate the us-
ability of a microkernel interface for building complete systems
based on that interface, until such a system has actually been
built.

Also, the tools and techniques used for developing formal spec-
ifications are quite different to those typically used for systems
software, so there is a high cost of entry for many kernel devel-
opers.

• Implementation in a low-level language exposes problems with
the design, but involves considerable development and debug-
ging effort, particularly if design problems are discovered late
in the implementation and lead to significant changes being
made. Also, the result is not useful as a readable specification,
as the expected behaviour is rarely made clear by low-level code

— especially as such code often contains bugs or diverges from
existing informal specifications.

• Implementation in a high-level language with well-defined and
safe semantics is a good compromise between the previous two
approaches. For example, the Osker kernel [12] is written in
Haskell. This approach produces an implementation which is
easier to reason about than one in a low-level language; how-
ever, it is limited by the tendency of high-level languages to de-
pend on complex runtime systems that are not ideal for use in a
stand-alone kernel. This may impose restrictions on the system
that are not present when using low-level languages (e.g., the
inability to exclude dynamic allocation of kernel memory).

We believe our approach combines the advantages of the last three
items while avoiding the problems of all four. In particular, we
avoided the challenges of a bare-metal implementation by devel-
oping a kernel prototype that runs on an abstract, non-platform-
specific model of the concrete hardware with greatly simplified fea-
tures compared to those of the raw hardware. The prototype is writ-
ten in Haskell, using the State monad to maintain a resemblance to
traditional kernel implementation languages (Sect. 3) while taking
advantage of Haskell’s pure functional semantics to ease formali-
sation (Sect. 5). We are able to rapidly expose usability issues by
developing user-level programs in parallel with the API, and run-
ning them directly on the executable specification using a simulator
(Sect. 4). The rapid prototyping and easy formalisation has allowed
us to explore many design alternatives and expose several problems
with the API during the development process (Sect. 6).

3. Kernel Modelling
This section introduces a general interrupt-style kernel model.
Some aspects have a bias towards seL4, but the general approach,
and in particular, the monad-based interface certainly extends to
other kernels.

3.1 Events and State

An operating system kernel is an event-driven system. The host ma-
chine spends the majority of its time executing user-level programs.
When an event occurs — such as an interrupt triggered by a timer
or an external device, a fault during program execution, or an ex-
plicit invocation of a kernel service — the program is interrupted
and control is transferred to the kernel, which makes appropriate
changes to the machine’s state in response to the event.

It follows that the kernel can be modelled as a function which
transforms the state of the modelled system in response to an event.
A running system may be simulated by repeatedly applying this
function to a sequence of events. The kernel model function might
have a type signature such as:

kernel :: Event → System → System

The Event type represents all of the possible events that the ker-
nel may encounter, including system calls, virtual memory faults,
hardware interrupts, and so on:

data Event

= SyscallEvent Syscall

VMFault Word Bool

ExecutionFault

TimerInterrupt

Interrupt Int

The System type represents the entire state of the system, including
the CPU registers, physical memory, and I/O devices. In our model
of seL4, this structure maps physical memory addresses to the con-
tents of the corresponding memory regions. Objects in the mem-
ory model are ordinary high-level Haskell data objects, rather than

streams of bytes; this eases access to their contents from Haskell
code, and also eases detection of invalid casts of physical memory
pointers.

The remainder of this section describes in further detail the data
structures we used to model the state of a seL4 kernel. We discuss
methods of generating events for the model to process in Sect. 4.

3.2 Kernel State

Given the type of kernel above, the kernel is obviously a state
transformer, and hence, conveniently represented as a monad. This
choice is reaffirmed by the need for recoverable exceptions, which
are detailed in the next subsection. In fact, we will see that we want
to distinguish between code that may raise recoverable exceptions
and code that does not have that liberty. Hence, it is worthwhile
to use monad transformers as provided by the MTL in the Haskell
Hierarchical Libraries [14].

We use the MTL’s parameterisable State monad as the base
monad for all parts of the kernel code that accesses or modifies parts
of the System state. To this end, we instantiate the generic State

monad with the System state to obtain the type Kernel thusly:

type Kernel = State System

kernel :: Event → Kernel ()
kernel event = do

...

In the seL4 model, System mainly maintains a mapping of physical
addresses to seL4 kernel objects stored at those addresses. Other,
lower-level details of the system, such as I/O devices, caches, and
memory management units, are left out of the model (or mod-
elled elsewhere, as discussed in Sect. 4). The seL4 kernel’s user-
level API exposes information about allocation of physical mem-
ory; therefore we must model the placement of kernel objects in
physical memory accurately. However, it is not essential to accu-
rately model the layout of data inside the kernel objects, as long as
we are convinced that the data will fit in the allocated space.

Objects stored in the physical address space model are those
which are allocated dynamically to support the abstractions pro-
vided by the kernel to user-level processes. The object types used in
seL4 are shown in Fig. 1. There are types representing thread con-
trol blocks (TCB), entries in virtual address space structures (CTE,
for a capability table entry), and endpoints used to coordinate inter-
process communication (Endpoint and AsyncEndpoint). Regions
allocated for use as virtual memory pages are marked as such, yet
contain no real data (UserData); the contents of virtual memory
pages are stored separately (Sect. 4.2). There are also objects that
represent statically allocated kernel data and code (KernelData).

The interface for accessing the physical memory model is
shown in Fig. 2, where PPtr is an abstraction of pointers into phys-
ical memory. It constrains the types that may be stored in and
extracted from physical memory to those of the class Storable,
which defines the size of physical-memory objects and the actual
storage and retrieval primitives. Note that this class is distinct from
the existing class Storable in Haskell’s standard foreign function
interface, though it has a similar purpose.

The representation of physical memory in the kernel model
is a critical aspect of the design and, indeed, the representation
we finally chose was the third we implemented, and even more
were considered and rejected. The reasons for using it were in part
specific to seL4, but many will apply to other kernels as well:

• The most realistic model of physical memory is simply an array
of bytes. However, such a model requires any stored high-level
data structures to be converted to and from streams of bytes,
which loses information about the type of the stored objects.
While such type information is obviously not available in a real

data KernelData = KernelData

data UserData = UserData

data Endpoint

= IdleEP

SendEP { epQueue :: [ThreadPtr] }
RecvEP { epQueue :: [ThreadPtr] }

data AsyncEndpoint

= IdleAEP

WaitingAEP { aepQueue :: [ThreadPtr] }
ActiveAEP { aepData :: Word }

data CTE = CTE {
... object reference ...

}
data TCB = Thread {

... thread state ...

}

Figure 1. The objects that may be stored in the seL4 physical
memory model.

getObject :: Storable a ⇒
PPtr a → Kernel a

setObject :: Storable a ⇒
PPtr a → a → Kernel ()

createObjects :: Storable a ⇒
PPtr a → Int → a → Kernel Int

deleteObjects :: PPtr a → Int → Kernel ()

Figure 2. Physical address space access functions.

system, retaining it eases detection of incorrect use of physical
pointers in kernel code.

Implementing this type of model in Haskell is undesirable.
The objects would need to be stored using a similar encoding
to that which they would use in a real kernel. An encoding
automatically generated by a Haskell compiler is unlikely to
be realistic; so the conversion between high-level objects and
byte streams would be done by hand-written functions, which
are error-prone and require additional maintenance whenever
the contents of an object change.

• The seL4 API relies on being able to store objects of one spe-
cific type either as stand-alone objects, or contained in a struc-
ture of another type — without using different means of access
in each case. Specifically, the thread control block (TCB) con-
tains capability slots, represented by the CTE type; CTE objects
may also be stored directly in the physical memory model, as
entries in a capability table. The seL4 capability management
code relies on being able to access CTE objects without any in-
formation about whether they are contained in a TCB.

This rules out the standard Map or Array types, as they require
each stored object to be identified by a single unique index —
which is not the case when one object must be accessed using

its own address, and also using the addresses of several objects
stored inside it.

We solve this problem by storing physical-memory objects in
a binary tree, which is indexed using the bits of a physical
address, starting with the most significant bit. All objects must
be stored at addresses aligned to their size (rounded up to the
nearest power of two). When accessing an object of a specific
type, the PSpace access functions expect to have to resolve all
of the physical address bits other than those forced to be zero
by the object’s alignment.

By resolving addresses one bit at a time, we can locate larger
container objects when they are present, and the smaller indi-
vidual objects otherwise.

• There are two approaches to storing objects of varying type in
the leaf nodes of the PSpace binary tree: either by encapsulat-
ing them in a Dynamic type (also provided by the Haskell Hi-
erarchical Libraries) or by constructing a universal type with a
variant for all types which need to be stored. While the universal
type is more straightforward to formalise, it requires a signifi-
cant amount of boilerplate code in the instances of Storable.
Dynamic makes the Storable implementation almost entirely
generic. In seL4, only one type has its own implementations of
the Storable methods.

Consequently, we chose to store objects in a bit-indexed binary tree
and wrap them into Dynamics.

Like the Haskell foreign function interface’s pointer types, the
physical memory pointer type (PPtr) is parameterised with the type
of the object it points to. This imposes some restrictions on the
implementation that we, as kernel programmers accustomed to C,
did not initially expect. For example, one of the kernel’s object
types — CTE, the capability table entry — contains a physical
pointer to another kernel object. This pointer cannot be accessed
independent of the type of the object it points to; so several small
parts of the capability management code have to be implemented
once for each kernel object type, even though their behaviour is
always the same.

3.3 Errors and Faults

A microkernel will often encounter error conditions during normal
operation. For example, a user program may send a request to the
kernel which is invalid, or which the program does not have the
right to perform. When such a condition is detected, the kernel
will typically interrupt the processing of the current event and
send some indication of the error back to user level. These are
distinct from errors caused by programming mistakes or invalid
states within the kernel itself.

Our model of the seL4 API defines several classes of error:

1. faults, which generate notification messages to user-level fault
handlers;

2. system call errors, which happen when a user program performs
a system call with invalid or incorrect arguments, and which
return an error code to the caller;

3. lookup failures while attempting to access a capability or virtual
address, which are converted to either faults or system call
errors depending on the context of the failure;

4. fatal errors, which are caused by bugs in the kernel or invalid
system states.

Fatal errors are modelled by calling error or undefined,
which are formally defined as non-terminating computations (⊥);
in practice they abort execution of the model with an error mes-
sage. In some instances, the Haskell language implicitly evaluates

⊥, such as failed pattern or guard matches; such occurrences are
also fatal errors for the kernel model and have the same effect as
explicit error or undefined calls.

The three classes of recoverable error may only occur in specific
sections of the kernel code. Our model isolates these areas of code
by transforming their monads with the ErrorT monad transformer.
This transformer, like StateT, is defined by the MTL; it adds
the ability to throw exception objects of a specific type. We have
defined an exception type for each class of non-fatal error, and
apply the ErrorT monad transformer with the appropriate exception
type to any kernel function that can fail.

data Fault = ...

data SyscallError = ...

data LookupFailure = ...

type KernelF f = ErrorT f Kernel

For example, the seL4 kernel defines the function lookupCap,
which searches the current thread’s capability space to find a ca-
pability (of type Capability) at a given address (of type CPtr).
If it fails to find the capability, it will throw an error of type
LookupFailure, describing the reason for the failure.

lookupCap :: CPtr → KernelF LookupFailure Capability

In an attempt to provide better readability for kernel programmers
unfamiliar with Haskell and monads, we provide aliases of some
standard monad functions with names indicating the purpose of
calling them in the kernel model:

withoutFailure :: Error f ⇒ Kernel a → KernelF f a

withoutFailure = lift

catchingFailure :: Error f ⇒ KernelF f a →
Kernel (Either f a)

catchingFailure = runErrorT

We also define several functions that can be used to handle errors
in common ways, such as transforming a LookupFailure into a
Fault or SyscallError, or ignoring the failure and returning a null
capability instead. They may also add extra context to the error that
is not available in the function that generates it.

For example, the seL4 API includes several system calls that
attempt to manipulate a capability address space, which is a data
structure containing a sparse mapping from addresses to capabili-
ties. If one of these system calls fails to locate a specified capability,
it will generate a system call error that is returned to the caller. On
the other hand, a similar failure while searching for a capability that
is being directly invoked will generate a fault message that is sent
to the current thread’s fault handler; a failure while trying to trans-
mit a capability through a one-way communication channel will be
silently ignored when the receiver is unable or unwilling to receive
the capability. Fig. 3 contains pseudocode that demonstrates this;
it shows three kernel functions that all use the lookupCap function
(described above), but do different things with the errors.

4. Exercising the API
To emulate the behaviour of a real kernel, the model requires a
source of events to process. We considered several possible sources
for these events:

• hand-crafted lists of events;

• lists of events captured from a real running kernel; or

• events generated by a program, given the current state of the
modelled host machine.

lookupErrorOnFailure :: Bool →
KernelF LookupFailure a →
KernelF SyscallError a

capFaultOnFailure :: CPtr →
KernelF LookupFailure a →
KernelF Fault a

nullCapOnFailure ::
KernelF LookupFailure Capability →
Kernel Capability

handleInvocation :: CPtr → KernelF Fault ()
handleInvocation capPtr = do

...

cap ← capFaultOnFailure capPtr $

lookupCap capPtr

invokeCap cap

...

capCopy :: CPtr → CPtr → KernelF SyscallError ()
capCopy srcPtr destPtr = do

...

srcCap ← lookupErrorOnFailure True $

lookupCap srcPtr

...

ipcCapTransfer :: CPtr → ThreadPtr → CPtr →
Kernel ()

ipcCapTransfer srcPtr reciever destPtr = do

...

srcCap ← nullCapOnFailure $

lookupCap srcPtr

...

Figure 3. Error handling in the seL4 kernel model

In a real system, events are triggered by particular hardware and
user-level program states; that is, the sequence of events depends
at least partly on the kernel’s handling of previous events. When
using a static event list, incorrect kernel behaviours do not have
the consequences they would have in a real system (and therefore
do not have the same effects on the future sequence of received
events); so event lists are of limited use for simulating the behaviour
of a system during API development. Therefore, we chose the third
option: generating events using a program.

Early versions of the seL4 API generated events using programs
written in Haskell, with a minimal model of the underlying hard-
ware. The final, most realistic version of this Haskell-based simu-
lator used a domain-specific language, similar in appearance to a
RISC architecture’s assembly language; a code fragment is shown
in Fig. 4. The interpreter for this language accessed the kernel’s
state directly to perform thread state manipulations and system
calls. It was useful for writing trivial tests of basic kernel function-
ality, while avoiding hardware-specific implementation details such
as virtual memory management and interrupt handling. However, it
was not suitable for more complex tests evaluating the practical
utility of the seL4 API — such as running software ported from the
existing L4 kernel.

To simulate the execution of more complex user-level programs
in a system based on the seL4 kernel, we made use of exist-
ing simulators of real hardware architectures. First, we defined
an abstract model of the execution context of a user-level thread

pingThread :: UserText
pingThread = [

Move AR0 R0,

LoadImmediate 0 R1,

CompareI R1 (=0) R2,

BranchIf R2 3,

LoadImmediate 0 AR0,

Syscall SysHalt,

Move R0 AR0,

Move R1 AR1,

DebugPrintf "Ping�%" [R1],
Syscall SysSendIPC,

ArithmeticI R1 (+1) R1,

Move R0 AR0,

Syscall SysReceiveIPC,

Branch (−11)
]

Figure 4. Program fragment written in the simple assembly-like
language used with early versions of seL4

(Sect. 4.1), and of the virtual memory accesses performed by a
thread (Sect. 4.2). We then used Haskell’s standard foreign function
interface to integrate a hardware simulator with the kernel model
(Sect. 4.3).

4.1 User-level Execution Context

Each user-level thread of execution has its own execution context.
This is the subset of the system’s state that a user-level program is
able to manipulate directly, without invoking the kernel to do so.

From a user thread’s point of view, the execution context typ-
ically consists of a set of data registers, a memory address space
containing data and instructions, and a register containing the vir-
tual address of the current instruction.

The data stored in the registers are local to the thread; no
other thread may access them without an explicit kernel invocation,
requiring appropriate authority. The representation of such data in
the Haskell model is a data structure called UserContext.

data Register

= IP SP AR0 ... AR7 R0 ... R31

newtype UserContext = UC {
ucRegisters :: Map Register Word }

When the kernel allows a particular thread to run, the user-level
simulator loads the contents of that thread’s UserContext structure
from its TCB, and updates the TCB with the new UserContext

before control returns to the kernel. This is similar to the behaviour
of a real kernel implementation.

Data stored in memory, on the other hand, is not necessarily
local to a thread. The user-level address space is virtual; its cor-
respondance to physical memory is controlled by the kernel. It is
possible for the memory mapping to overlap, or be entirely identi-
cal to, mappings used in other execution contexts. Therefore, a dif-
ferent mechanism must be used to model virtual memory accesses.

4.2 Virtual Memory Accesses

A virtual memory access conceptually consists of two separate op-
erations: a kernel invocation to determine the appropriate physical
address, followed by an access to physical memory, which is part
of the global state of the machine.

In practice, the results of the kernel invocations involved in a
virtual memory access are usually either cached in hardware using
a translation lookaside buffer (TLB), or determined directly by
the hardware using a hardware-walked mapping table. In either
case, when the hardware cannot locate a mapping that a user-level
thread has attempted to use, it will invoke the kernel to request
that a mapping be located. Once a mapping is found, the hardware
will perform the second half of the virtual memory access: the
corresponding physical memory access.

To allow a hardware simulator to perform the physical memory
access component of a virtual memory access, the physical memory
model is separated into two parts:

• the kernel state structure stores internal kernel data as Haskell
data objects, and records the type of the data stored at each
memory location (Sect. 3.1); and

• the hardware simulator’s state stores untyped words that are
used when simulating virtual memory accesses. This includes
the data read and written to physical addresses via virtual mem-
ory accesses; for some simulated architectures, there are also
hardware-defined mapping tables.

The hardware simulator performs the same TLB or direct
lookups as real virtual memory hardware it models, and invokes
the kernel when it is unable to find a mapping. This kernel invo-
cation is in the form of a VMFault event; the kernel responds to it
by either providing the hardware with a mapping immediately, or
halting the current thread until the fault can be resolved. In seL4,
virtual memory faults are handled by user-level pagers, which use
system calls to resolve the fault and restart the faulting thread.

It is possible to combine the two physical memory models, and
store untyped words in frame-sized arrays in the kernel state; in
fact, early versions of the Haskell model did so. However, this
requires at least one FFI call from the external simulator to the
Haskell model for every instruction executed; this made our ex-
ternal simulator perform very poorly. The split physical memory
model only requires transitions into the Haskell model when events
occur that would enter the kernel on a real system, which allows
the simulator to be much faster, and more closely resembles the
behaviour of a real kernel. The Isabelle translation, for which per-
formance concerns are irrelevant, still uses a unified memory model
(Sect. 5.5).

4.3 External Simulator Interface

To provide an event load similar to that of a real implementation,
we developed an interface between the Haskell kernel model and
an external simulator capable of executing user-level instructions
compiled for a real CPU. This interface has been used to integrate
the model with a modified version of the M5 Alpha simulator [25],
and also with a locally-developed generic CPU simulator instanti-
ated with a model of the ARMv6 user-level instruction set.

The simulator executes instructions until an event occurs that
must be handled by the kernel model. When an event is generated,
the simulator transfers the current user-level context to the kernel
model’s state data structure, then calls the kernel to handle the
event, and finally restores the current user level context from the
kernel state. The kernel may change the contents of the user level
context, or select a new current context, while handling the event.

Fig. 5 shows the direction of control flow between the kernel
model and the external simulator. Most of the interface consists
of routines provided by the kernel and called by the simulator, as
follows:

Save/Restore Context: SaveContext supplies the kernel with the
current user-level context, which consists of the current register

Kernel ModelSimulator

Save/Restore

Syscall

Interrupt

Fault

Load/Store

TLB Access

Figure 5. Structure of the simulator interface.

set and the appropriate return address for the kernel call in
question; it is called prior to entering the kernel.

At the termination of a call to the kernel model, RestoreContext
is used to set the simulator execution state. This allows the ker-
nel to restore any execution context, e.g. to achieve a context
switch.

Fault: Fault is used to signal a memory access fault (TLB miss)
to the kernel.

Syscall: Syscall is the system call entry point for user-level
code (triggered by an explicit user-level instruction, such as
the ARMv6 SWI instruction).

Interrupt: Interrupt is used to notify the kernel of timer inter-
rupts.

There are also a small number of callbacks used by the kernel
to modify the state of the simulated machine.

Load/Store Word: These routines allow the kernel to read or write
words in frames that are used for either virtual memory pages or
hardware-walked page tables — that is, to access data that may
also be accessed by the CPU while running user-level code.

TLB Insert/TLB Flush: These routines exist to allow the kernel
to manipulate the current TLB state, typically in response to
a previously signalled Fault or when switching to a different
user-level context.

5. Formalisation of the Model
The overall goal of our project includes more than the development
of the seL4 API. In future work, we plan to formally verify a
high-performance C implementation of this API. The approach
is to develop and design the API in Haskell to reach a highly
validated and mature specification quickly and at the same time
to facilitate easy formalisation of this API in the theorem prover
Isabelle/HOL [26]. This formalisation can then be used as a basis
for the verification of the C implementation.

Properties we are interested in verifying of the Haskell model
fall into three main categories: refinement, low-level properties, and
security models. With refinement, we mean that the eventual C im-
plementation is shown to exhibit the same behaviour as the Haskell
design. In this case, the Haskell model is by definition correct. Low-
level properties we are interested in include termination of all sys-
tem calls, kernel-object memory never being mapped to user space,
and only kernel code every executing in privileged mode. Direct
security properties usually are phrased with respect to a security
policy. Since it is the point of a microkernel not to provide policies,
but mechanisms only, we concentrate on showing that it is possi-
ble to implement specific security models instead. We are currently

working on showing that seL4 can implement an abstract take/grant
capability model [3, 24].

While the actual verification remains future work, we have suc-
cessfully extracted a formalisation of the seL4 API in Isabelle/HOL
and proved termination. This section gives an overview of the for-
malisation process we used and summarises some of the more in-
teresting problems we encountered.

5.1 Translating Haskell to Isabelle/HOL

In many ways, the prototype implementation of the seL4 API in
Haskell can already be seen as an executable specification. The
difference to a fully formal specification is that the latter requires
a complete, mechanised formal semantics and tool support for
reasoning and theorem proving. The work required to gain a fully
formal specification for seL4 amounted to translating a specific
Haskell program into the theorem prover.

Although there are a number of attempts to translate Haskell
to theorem provers automatically [1, 11, 13, 16], none of these ap-
proaches were mature enough to work for our code base which
uses a number of non-trivial Haskell features and GHC extensions.
Since the translated Isabelle formalisation is for human consump-
tion, namely for later, interactive verification and refinement, it was
important for us to maintain a clear 1:1 correspondence to the orig-
inal Haskell code. For these reasons we chose to manually, but
systematically translate the Haskell program into Isabelle/HOL.
We chose the logic HOL over HOLCF which would be closer to
Haskell, because one of the properties we are interested in for ver-
ification is that the kernel is bottom-free, i.e., that all system calls
terminate correctly.

For the most part, this translation was purely syntactical and
straightforward with regular expression matching, manual correc-
tions, and Isabelle’s interactive type and termination checking as
the main tools. The interesting hurdles we encountered are the topic
of the next four subsections.

5.2 A Logic of Total Functions

HOL is a logic of total functions and is as such not suitable to ex-
press the semantics of Haskell directly. It is however suitable to
describe the semantics of Haskell functions that always terminate
and that do not make essential use of laziness. The seL4 implemen-
tation consists of such functions.

Note that our goal is mainly formalisation, not translation of
every language construct. We are free to change for instance zip
xs [1..] into the equivalent zip xs [1..length xs] and thus
avoid formalising laziness in all generality as a full translation
mechanism would have to.

Danielsson et al [5] show that partiality does not matter if
the program is shown to terminate. Since Isabelle/HOL requires
a proof of termination for every definition that is entered, the
translation process itself already ensures termination and we have
thereby already proved a first theorem about the kernel: all API
calls terminate.

Almost all of these termination proofs were automatic (the
definitions being expressed as either simple abbreviations or with
primitive recursion), and the rest had easy measures such as the
number of bits still to process. We have to admit to taking the
easy way out at one instance, though. The algorithm in question
follows pointers in the data structure that models physical machine
memory. We have shown a similar mechanism to terminate in the
pilot study [18], but, since we still expect changes from the ongoing
validation of the seL4 API in real systems, we wanted to avoid deep
proofs at this stage. Instead, we observed that the set of machine
words is finite and that traversing the tree will visit each pointer
at most once. This termination criterion was easily accepted by
Isabelle.

5.3 Monads

As shown above, the Haskell implementation of seL4 uses mon-
ads heavily. Isabelle does provide single parameter axiomatic type
classes, but it does not provide constructor classes, and can hence
not express monads in the traditional abstract fashion.

It is, however, possible to define concrete monads in Isabelle.
The seL4 implementation uses two main monads: a state trans-
former (Kernel), and a state transformer with an exception monad
on top (KernelF). They are easily defined in the same way as their
Haskell counterparts.

It was easy to prove in Isabelle that the monad laws hold for
all of the instantiations, and it was also not hard to provide a
slightly modified do-notation where do x ← f; g x od stands
for bind f (λx. g x). In the absence of overloading that a type
class would have provided, we provide a different do-notation for
each of the instantiations (do and doE). This does introduce a small
notational overhead, but we found that this in fact made specifica-
tion clearer than the original Haskell code because with Haskell’s
nested do-blocks it was often not obvious in which monad the op-
erations are performed.

Fig. 6 shows a typical example of translated monadic code and
demonstrates how some of the more complex Haskell case patterns
are resolved in Isabelle/HOL.

Haskell:
activateThread = do

thread ← getCurThread

state ← getWaitState thread

case state of

NotWaiting → return ()
WaitingToSend { pendingReceiveCap = Nothing } →

doIPCTransfer thread (waitingIPCPartner state)
WaitingToReceive {} →

doIPCTransfer (waitingIPCPartner state) thread

_ → error "Current�thread�is�blocked"

Isabelle/HOL:

activateThread ≡
do thread ← getCurThread;

state ← getWaitState thread;
case state of

NotWaiting ⇒ return ()
| WaitingToSend eptr badge fault cap ⇒

if cap = None then
doIPCTransfer thread (waitingIPCPartner state)

else
arbitrary

| WaitingToReceive eptr ⇒
doIPCTransfer (waitingIPCPartner state) thread

| _ ⇒ arbitrary
od

Figure 6. Typical monad code translation

For specification purposes, this concrete treatment of monads
proved fully adequate. The main disadvantage is that we cannot
reason abstractly about monads just in term of monad laws, which
could lead to duplication of theorems. So far this did not turn out
to be a problem. We mostly had to reason about the behaviour of
the state monad, which involved lemmas specific to state monads,
not lemmas about monads in general. Scalability was not a prob-
lem. For some programs it might turn out inconvenient to not have
monad transformers available as such, but only their results. Apply-
ing significantly more than two transformers is unlikely to occur in
practice, though.

axclass tf_byte < type

to_byte :: ’a::tf_byte ⇒ word8 list

from_byte :: word8 list ⇒ (’a::tf_byte × word8 list) option

axclass storable < tf_byte

from_byte (to_byte x @ xs) = Some (x, xs)

Figure 7. The axiomatic type class storable in Isabelle/HOL.

(f1 -- f2) bs ≡
let r1 = f1 bs;

(x, r2) = case r1 of None ⇒ None
| Some (x, xs) ⇒ Some (x, f2 xs)

in case r2 of
None ⇒ None

| Some (y, ys) ⇒ Some ((x, y), ys)

x � f ≡ case x of None ⇒ None
| Some (y, xs) ⇒ Some (f y, xs)

Figure 8. Combinator and extractor for storable.

5.4 Dynamic

The Dynamic extension of GHC to Haskell98 allows a limited form
of type casting that Isabelle/HOL does not provide: automatic con-
version of monomorphic types to the type Dynamic and back. As
described above, this extension is used in the kernel implementa-
tion to model physical memory.

We do not represent Dynamic in Isabelle/HOL directly, but in-
stead implement the type class Storable (we could shift this to
Typeable, but without immediate gain in this specific application).
We chose a concrete type that is large enough to support an injec-
tion of all storable objects: word8 list where word8 is the type of 8
bit machine words. This choice was arbitrary, we could just as well
have chosen natural numbers or anything else large enough. We
picked word8 list, because we already had some of the infrastruc-
ture for encoding/decoding other types into it available from our
work on a memory model for C pointers [29]. The difference here
is the lifting of these encodings to more complex data structures by
using parser combinators.

We avoided encoding objects into byte streams in Haskell, be-
cause it is error prone and hard to maintain. Here the situation is
different. We do not need to adhere to any specific layout of data
and on instantiating a type to class Storable, we need to prove the
defining axiom of the class. The prover will alert us if something
breaks because of subsequent changes.

In Fig. 7 we use the class tf_byte, a subclass of Isabelle’s
default type, to restrict the type of the two overloaded constants
to_byte and from_byte. The subclass storable introduces the
defining axiom. The constant from_byte has a slightly more com-
plex type than might be expected, because we are interested in what
remains of the stream when we have read an object (@ is the append
operator). Fig. 8 defines a combinator and an extractor.

These can then be used to build up more complex types from
existing ones. Fig. 9 for example shows how the datatype used
to model capability rights is introduced if we have already proved
that bool::storable. Type inference and overloading save us from
specifying which to_byte and from_byte are to be used. We only
need to give the structure of the encoding.

We have shown machine words, booleans, natural numbers, the
option (in Haskell Maybe) type, lists, and functions to be instances
of this class. Functions can be encoded as long as their domains can
be shown to be finite enumerations. This is done by iterating over
the domain and encoding only the range. We found this approach

datatype cap_rights = CapRights bool bool bool bool

to_byte (CapRights b1 b2 b3 b4) =
to_byte b1 @ to_byte b2 @ to_byte b3 @ to_byte b4

from_byte bs ≡
(from_byte -- from_byte -- from_byte -- from_byte) bs �
(λ(b1, b2, b3, b4). CapRights b1 b2 b3 b4)

Figure 9. Example for type class storable

to scale well beyond primitive types; once these were defined, the
build-up of all other storable data types and records in the kernel
was swift, and the instantiation proofs automatic.

5.5 User-level Execution

The outside interface of the kernel in the formalisation is the same
as the one described in Fig. 5 in Sect. 4.

Since performance of executing user programs is not an issue
in the formalisation, we can treat virtual memory accesses as nor-
mal system events which access the kernel’s state rather than a sep-
arate hardware state (Sect. 4.2). Because the rest of the Haskell
code uses the external simulator interface for this, we need a map-
ping between the external simulator functions and system events:
loadWord and storeWord correspond to the read and write events.
The functions tlbInsertEntry and tlbFlushAll can just map to
the identity on the system state — they affect the external simula-
tor only, not the kernel. The register part of the user state remains a
direct translation of the corresponding Haskell code.

5.6 Next Steps

The next steps in the formalisation branch of this project are in two
directions.

On the one side there is the creation of a more abstract, possibly
non-executable and non-deterministic specification that is shown
(by proof) to be an abstraction of the translation. This specification
can then be used for easier proofs of safety properties and security
properties that are stable under formal refinement.

On the other side is the high-performance implementation of the
seL4 API in C and the formal refinement of the current executable
specification towards this implementation.

6. Experience
It is difficult to quantify the advantages of a design methodology,
especially in its first application. However, we can make qualitative
observations based on our experience with the approach.

6.1 API Design Evolution

When we began work on the executable specification, we had plans
for several new features of the seL4 microkernel that would give it
the security properties we desired. However, we had no concrete
designs for these features. Our approach allowed us to rapidly
build prototypes of proposed designs, concurrently testing user-
level code in the simulation environment and modifying the kernel
model to address issues raised by the tests.

The major changes relative to L4 that we wished to explore
included:

• Access control for inter-process communication (IPC). In L4,
there is a global namespace for addressing messages, and there
have been several unsuccessful attempts to provide secure and
efficient mechanisms for restricting its use. The goal for seL4
was to use local namespaces for messaging instead, allowing
restrictions to be imposed by simply limiting the set of address-
able IPC partners.

echoThread :: [State UserContext]
echoThread = [

do ---�Save the endpoint cap and wait for a message
Just ep ← getCR

setCapVar ep "ep"

trace "Echo�thread�started" $

return $ Just $ CapRead ep ,

do ---�Send a message to the endpoint
Just ep ← getCapVar "ep"

n ← getMR 1

setMR 0 0

clearCR

trace ("Echo�" ++ (show n)) $

return $ Just $ CapWrite ep ,

do ---�Wait for another message and loop
Just ep ← getCapVar "ep"

setIP 1

return $ Just $ CapRead ep

]

Figure 10. Part of a user level program using the state monad.

• Kernel resource management. L4 kernels have limited pools
of kernel memory, and little or no accounting for use of that
resource. This leaves them vulnerable to denial-of-service at-
tacks. The goal for seL4 was to develop a mechanism for man-
aging kernel resources from user-level servers, including dele-
gation of resource management to clients.

• Kernel invocation mechanisms. L4 kernels restrict certain sys-
tem calls to privileged threads. We desired a more flexible
mechanism which would allow user level servers to implement
system call access control policies, rather than having a fixed
policy in the kernel.

One advantage of our approach in exploring these areas of the
design is that there is no need to completely implement the kernel
before beginning to test the new design. We focused first on the
new IPC access control mechanisms. We were able to develop user-
level code testing those mechanisms before the model implemented
any virtual memory or capability address spaces, and before it
realistically encoded system call arguments. For example, part of
the first IPC test program — a thread which repeatedly receives
messages through one IPC endpoint and forwards them to another
— is shown in Fig. 10. This program is written in a simple Haskell-
based user-level environment in the State UserContext monad,
which we used in the early stages of the model’s development;
it makes use of an arbitrarily large user-level register set, directly
possesses opaque capability objects rather than using references to
them, and does not perform virtual memory accesses.

Also, once we started adding new kernel services, we were able
to develop them gradually, passing through intermediate stages that
would be difficult or impossible to implement on bare hardware.
For example, the user-level management of capability and virtual
memory address space structures, which presently uses a multi-
level guarded page table [22], began as a simple set of operations on
a large flat array of mappings — an impractical structure in a bare-
hardware implementation, but no problem in our abstract model.

The incremental development process is still in use: our simu-
lation environment uses multi-level guarded page tables for virtual
memory address spaces, independent of the simulated architecture.
This would be possible on, for example, a MIPS or Alpha bare-
hardware implementation, but not on the ARMv6, which defines a
specific translation table format for which we have not yet specified

an interface. We perform most of our testing on an ARMv6 simu-
lator, but the currently specified subset of the seL4 API could not
be implemented on real ARMv6 hardware.

6.2 Parallel Development

Our approach of concurrently implementing a kernel model in
Haskell, formalising it, and porting applications to the simulation
environment has proved productive. It provides feedback during
highly interactive and interwoven design iterations that have not
yet concluded.

The translation to Isabelle/HOL started relatively early, when
the seL4 API was nearing a first stable point and first user-level
binaries could be run through the machine simulator. During the
translation process, we found and fixed a number of problems, for
example an unintentionally unbounded runtime of the IPC send op-
eration. It was discovered because Isabelle demanded termination
proofs for operations that were supposed to execute in constant
time.

This shows that formalisation and the use of theorem proving
tools is beneficial even if full verification is not yet performed. In
our setting the formalisation cost so far has been significantly lower
than the implementation and testing cost, while the design team did
not have to switch to completely new methods or notations. The
application of formalisation early in the design phase also avoids
potentially costly corrections later.

The porting of existing software to the simulation environment
has also led to the identification of issues requiring attention. When
attempting to implement a higher-level system upon the microker-
nel, a required operation on a particular type of capability was
found to be missing. The missing operation was added in hours,
and formalised soon afterwards.

Summarising, we have found our methodology has enabled the
kernel designers and implementors, the formal modellers, and the
higher-level system programmers to work more closely together,
leading to faster and better results than we would expect if the
phases had been sequential.

6.3 Progress

It is difficult to quantify the productivity gain we believe we have
by using our approach. We know of two data points with which
we can roughly compare: the VFiasco project [15], and the Coy-
otos project [27]. Both projects aim to produce a formally verified
microkernel via differing approaches.

The VFiasco project aims to verify the existing Fiasco microker-
nel directly by developing a formal semantics for a subset of C++
(its implementation language). The project began in Nov 2001 and
has produced formal semantics for some of C++. It is not clear how
much progress has been made on formalisation of the microkernel
itself, nor how near they are to a subset of C++ sufficient to cover
the subset used to implement Fiasco.

The Coyotos project takes the approach of developing a new
low-level language (BitC) with precise formal semantics that can
serve as the implementation language. They have released a speci-
fication and an alpha-release compiler for BitC, but are yet to pub-
lish a formal semantics for the language. The project has also pub-
lished an informal reference manual for the Coyotos kernel itself.
It is unclear how the actual implementation of the reference man-
ual is progressing beyond what is publicly available in their source
repository, which contains mostly kernel support libraries and util-
ities required to bootstrap a kernel on raw hardware.

In contrast, our approach has produced a precisely specified
kernel API, together with a usable reference implementation. We
also have a formal model in Isabelle for the implementation.

6.4 Precise Specification

Our choice of Literate Haskell as our modelling language has en-
abled us to produce a reference manual and implementation that is
one and the same thing, ensuring that our reference manual and ref-
erence implementation are consistent. Our catch phrase is “we run
the manual”. While our hope is to produce a readily understand-
able reference manual describing each operation with the reference
Haskell implementation as the definitive definition of each opera-
tion, structuring our code to avoid too much implementation detail
has proved challenging. However, the document is improving with
each iteration.

7. Related Work
Operating systems in functional languages. Early examples of
the use of functional languages for systems programming are the
work on Nebula [17] and KAOS [28]. These early works used
CPS and stream processing to model the state and event-based
interfaces of the underlying hardware. Improving on some of the
early approaches, Wallace & Runciman investigated the use of
functional programming for embedded systems [33].

Recently, the House and Osker kernels [12] (in Haskell) and
the Hello kernel [9] (in Standard ML) demonstrated that modern
functional languages can be used to develop bare metal implemen-
tations of operating systems. A central aspect of this work is the
adaptation of the runtime system (RTS) of a high-performance im-
plementation, such as that of GHC, to run without any operating-
system support on bare metal. Building on such a modified RTS,
the work on House & Osker has contributed abstractions of the un-
derlying hardware (such as memory management) that simplify the
reasoning about low-level code. This work also used a monadic in-
terface whose properties were formalised in P-Logic.

Verification of operating systems. Earlier work on OS verifica-
tion includes PSOS [7] and UCLA Secure Unix [32]. Later, KIT [2]
describes verification of process isolation properties down to ob-
ject code level, but for an idealised kernel with far simpler and
less general abstractions than modern microkernels. A number of
case studies [4, 6, 31] describe the IPC and scheduling subsystems
of microkernels in PROMELA and verify them with the SPIN
model checker. Manually constructed, these abstractions are not
necessarily sound, and so while useful for discovering concurrency
bugs, they cannot provide guarantees of correctness. The VeriSoft
project [10] is attempting to verify a whole system stack, includ-
ing hardware, compiler, applications, and a simplified microkernel
called VAMOS. We discussed VFiasco [15] and Coyotos [27] in
the previous section.

Our approach occupies the middle ground between two ex-
tremes: the a priori approach where the kernel is designed formally
from the start, and the a posteriori approach where a traditional
(C/C++) implementation is created first and formalised later. Both
can be found in the literature, e.g. the formal design process of
PSOS [7] and implementation verifications such as [4, 6, 31].

In our setting, the a priori approach would design the kernel di-
rectly in the theorem prover and extract a program to be used for
validation. This requires that the OS designers are intimately famil-
iar with the formal specification language, which they are usually
not. Haskell on the other hand is commonly taught to undergraduate
students. They also would be restricted in their use of the language
by the executable fragment of HOL, since validation of low-level
design decisions is necessary to distinguish between those designs
that can possibly be implemented efficiently and those that can-
not. This restriction is significant, because, as opposed to Haskell,
even full Isabelle/HOL, while perfectly suited for specification, is
not a comfortable programming language yet, certainly not one for

rapid development, testing and prototyping of sizeable, low-level,
and largely imperative systems.

The a posteriori approach would create a traditional C imple-
mentation first. Folklore says and our own experience [30] shows
that the effort for formalisation here is significantly higher and cor-
respondence to the prototype much less obvious. Additionally, the
effort for implementation is significantly higher as well — we es-
timate the effort for creating a micro-kernel prototype the tradi-
tional way in our OS group to be about 1 person year. This does
not include the numerous iterative changes to the API that we went
through in our process.

Our approach lies in between. Compared to the a priori method,
we enjoy the richness and expressiveness of a full functional pro-
gramming language and keep the intricacies of formalisation from
the OS designers. Compared to the a posteriori method, we arrive
at a precise formalisation very quickly and easily. We also signif-
icantly speed up development and make an iterative prototyping
process possible that in a few months has gone through more API
changes than what would otherwise have taken years to implement.

8. Conclusion
We have described and applied a method for high turnaround, high
assurance development of microkernels. At the heart of the method
is the use of the functional programming language Haskell, which
is used to specify and implement an abstract model of the microker-
nel. The use of a high-level language to specify the kernel avoids
the common pitfalls of high assurance tools being inaccessible to
typical kernel developers, inadvertent ambiguity of informal speci-
fication, and the complexity of managing low-level hardware just to
prototype ideas. The method produces a specification that is read-
ily amenable to formalisation, a requirement for high assurance.
When combined with a machine simulator, the specification also
serves as a reference platform for the construction of higher-level
systems upon the prototype kernel.

Our experience with the methodology has been that it enables
the prototyping of ideas without requiring a semi-complete proto-
type to simply boot and test the kernel, and it provides both formal
modellers and application developers with prototype implementa-
tions earlier, leading to faster design iterations. Formalisation has
proved to be much easier using our methodology compared to ex-
tracting a formal model from a traditional reference manual to-
gether with a low-level language implementation. This is due to
the nature of the specification language, and the fact it is a pre-
cise specification. We believe the methodology provides us with
productivity gains compared to approaches taken by projects with
similar goals.

We expect to continue stepping through iterations of our design
while continuing porting our higher-level application environment
to the prototype kernel. We expect the design to mature in the
coming months, at which point we will embark on a bare-metal
implementation using a traditional systems language, which the
verification project expects to show is a refinement of our original
kernel specification.

Acknowledgements We thank Simon Winwood, Gernot Heiser
and the anonymous reviewers for feedback on earlier drafts of this
paper. National ICT Australia is funded by the Australian Govern-
ment’s Department of Communications, Information Technology,
and the Arts and the Australian Research Council through Back-
ing Australia’s Ability and the ICT Research Centre of Excellence
programs.

References
[1] A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell. Verifying

Haskell programs using constructive type theory. In Haskell’05,
Tallinn, Estonia, 2005.

[2] W. R. Bevier. Kit: A study in operating system verification. IEEE
Transactions on Software Engineering, 15(11):1382–1396, 1989.

[3] M. Bishop and L. Snyder. The transfer of information and authority
in a protection system. In SOSP ’79: Proceedings of the seventh ACM
symposium on Operating systems principles, pages 45–54, New York,
NY, USA, 1979. ACM Press.

[4] T. Cattel. Modelization and verification of a multiprocessor realtime
OS kernel. In Proceedings of FORTE ’94, Bern, Switzerland, October
1994.

[5] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and
loose reasoning is morally correct. In J. G. Morrisett and S. L. P.
Jones, editors, POPL, pages 206–217. ACM, 2006.

[6] G. Duval and J. Julliand. Modelling and verification of the RUBIS
µ-kernel with SPIN. In SPIN95 Workshop Proceedings, 1995.

[7] R. J. Feiertag and P. G. Neumann. The foundations of a provably
secure operating system (PSOS). In AFIPS Conference Proceedings
(NCC 79), pages 329–334, New York, NY, USA, June 1979.

[8] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann.
Interface and execution models in the Fluke kernel. In Proceedings
of the 3rd USENIX Symposium on Operating Systems Design and
Implementation, pages 101–115, New Orleans, LA, USA, Feb. 1999.
USENIX.

[9] G. Fu. Design and implementation of an operating system in
Standard ML. Master’s thesis, Dept. of Information and Com-
puter Sciences, University of Hawaii at Manoa, 1999. Available:
http://www2.ics.hawaii.edu/∼esb/prof/proj/hello/index.html.

[10] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the cor-
rectness of operating system kernels. In Proc. 18th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs’05),
pages 1–16, Oxford, UK, 2005.

[11] T. Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview
of the Programatica ToolSet. High Confidence Software and Systems
Conference, HCSS04, 2004.

[12] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A principled
approach to operating system construction in Haskell. In ICFP ’05:
Proceedings of the tenth ACM SIGPLAN international conference
on Functional programming, pages 116–128, New York, NY, USA,
2005. ACM Press.

[13] W. L. Harrison and R. B. Kieburtz. The logic of demand in Haskell.
Journal of Functional Programming, 15(6):837–891, 2005.

[14] Haskell hierarchical libraries. http://www.haskell.org/ghc/docs/latest/html
2006.

[15] M. Hohmuth and H. Tews. The VFiasco approach for a verified
operating system. In Proc. 2nd ECOOP Workshop on Programm
Languages and Operating Systems, Glasgow, UK, Oct. 2005.

[16] B. Huffman, J. Matthews, and P. White. Axiomatic constructor
classes in Isabelle/HOLCF. In J. Hurd and T. F. Melham, editors,
TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages
147–162. Springer Verlag, 2005.

[17] K. Karlsson. Nebula: a functional operating system. Technical
Report LPM11, Laboratory for Programming Methodology, Chalmers
University of Technology and University of Goteburg, 1981.

[18] G. Klein and H. Tuch. Towards verified virtual memory in L4. In
K. Slind, editor, TPHOLs Emerging Trends ’04, Park City, Utah,
USA, 2004.

[19] R. Kolanski and G. Klein. Formalising the L4 microkernel API. In
B. Jay and J. Gudmundsson, editors, Computing: The Australasian
Theory Symposium (CATS 06), volume 51 of Conferences in Research
and Practice in Information Technology, pages 53–68, Hobart,
Australia, Jan. 2006.

[20] L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.org/projects/pistachio/.

[21] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Pol-
icy/mechanism separation in Hydra. In SOSP ’75: Proc. Fifth Sym-
posium on Operating Systems Principles, pages 132–140, New York,
NY, USA, 1975. ACM Press.

[22] J. Liedtke. Address space sparsity and fine granularity. SIGOPS Oper.
Syst. Rev., 29(1):87–90, 1995.

[23] J. Liedtke. Towards real microkernels. Communications of the ACM,
39(9):70–77, Sept. 1996.

[24] R. J. Lipton and L. Snyder. A linear time algorithm for deciding
subject security. J. ACM, 24(3):455–464, 1977.

[25] The M5 simulator system. http://m5.eecs.umich.edu/, 2006.

[26] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer Verlag, 2002.

[27] J. Shapiro. Coyotos. www.coyotos.org, 2006.

[28] W. Stoye. Message-based functional operating systems. Science of
Computer Programming, 6(3):291–311, 1986.

[29] H. Tuch and G. Klein. A unified memory model for pointers.
In Proceedings of the 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, pages 474–488,
Montego Bay, Jamaica, Dec. 2005.

[30] H. Tuch, G. Klein, and G. Heiser. OS verification — now! In
Proceedings of the 10th Workshop on Hot Topics in Operating
Systems, Santa Fe, NM, USA, June 2005.

[31] P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, and
G. Back. Formal methods: a practical tool for OS implementors.
In Proceedings of the Sixth Workshop on Hot Topics in Operating
Systems, pages 20–25, 1997.

[32] B. Walker, R. Kemmerer, and G. Popek. Specification and verification
of the UCLA Unix security kernel. CACM, 23(2):118–131, 1980.

[33] M. Wallace and C. Runciman. Lambdas in the liftshaft—functional
programming and an embedded architecture. In FPCA ’95:
Proceedings of the Seventh International Conference on Functional
Programming Languages and Computer Architecture, pages 249–
258, New York, NY, USA, 1995. ACM Press.

