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Abstract

This dissertation presents a survey of the theoretical and prac-
tical techniques necessary to provably eliminate side-channel leak-
age through known mechanisms in component-based secure sys-
tems.

We cover the state of the art in leakage measures, including
both Shannon and min entropy, concluding that Shannon entropy
models the observed behaviour of our example systems closely,
and can be used to give a safe bound on vulnerability in practical
scenarios.

We comprehensively analyse several channel-mitigation strate-
gies: cache colouring and instruction-based scheduling, showing
that effectiveness and ease of implementation depend strongly
on subtle hardware features. We also demonstrate that real-time
scheduling can be employed to effectively mitigate remote chan-
nels at minimal cost.

Finally, we demonstrate that we can reason formally (and me-
chanically) about probabilistic non-functional properties, by for-
malising the probabilistic language pGCL in the Isabelle/HOL
theorem prover, and using it to verify an implementation of lat-
tice scheduling, a well-known cache-channel countermeasure. We
prove that a correspondence exists between standard vulnerability
bounds, in a channel-centric view, and the refinement lattice on
programs in pGCL, used to model a guessing attack on a vulnera-
ble system—a process-centric view.
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1 Introduction

In this work we investigate the problem of side and covert channels in
component-based secure systems. We approach the problem from two direc-
tions, implementation and verification, and this dissertation is therefore divided
into three parts: Chapter 2 sets out the problem of information leakage in
detail, surveys historical work, and establishes both a threat model: the guess-
ing attack, and measures of vulnerability: Shannon capacity and min leakage;
Chapter 3 covers the implementation and evaluation of practical countermea-
sures and the thorough empirical analysis of real channels; Finally, Chapter 4
through Chapter 6 present our contribution to verification, demonstrating
that we can extend existing large-scale refinement proofs to tackle the sorts of
probabilistic properties that arise in the study of side and covert channels.

This work is an offshoot of the L4.verified project [Klein et al., 2009, 2014],
that established the functional correctness of the seL4 microkernel [Derrin
et al., 2006; Elkaduwe et al., 2008], with a fully machine-checked proof. In
addition to contributing generally to the study of systems-level approaches
to information leakage, we lay the groundwork for the rigorous treatment
of these channels in seL4. Our experimental work is thus mostly carried
out on this system, although our results are more widely applicable. We also
present methods to incorporate reasoning about highly hardware-specific, and
often probabilistic, behaviour that are compatible with our refinement-driven
verification methodology.

The two parts are presented independently, as far as possible. A reader
who is only interested in the practical measurement and mitigation of channels
can get a complete picture of the relevant work from Chapter 2 and Chapter 3,
and can safely skip the remainder. Likewise, a reader interested only in
verification could safely skip Chapter 3, and proceed directly to Chapter 4.

1



2 CHAPTER 1. INTRODUCTION

The practical approach provides context for the verification approach, but the
two nevertheless stand alone.

The contents of the chapters are as follows:

• Chapter 2 presents the foundational results that motivate both the imple-
mentation and verification parts. In it, we introduce the specific problem
of timing channels, and our threat model: adaptive guessing attacks that
exploit the extrinsic leakage of a system. We survey the literature on
leakage models, settling on Shannon capacity as our usual measure of
choice for attacks involving large numbers of guesses, while min leakage
provides tighter security bounds for smaller numbers. We contribute
a proof of the maximum divergence of one-guess vulnerability given
entropy, justifying that Shannon entropy can be used to give safe (if
somewhat pessimistic) bounds on one-guess vulnerability.

• In Chapter 3, we take the groundwork of Chapter 2, and apply it prac-
tically. We demonstrate that existing techniques (cache colouring and
instruction-based scheduling) can be implemented efficiently in seL4,
to mitigate local channels with varying degrees of success. We also
propose a novel mechanism (scheduled delivery) to tackle remote chan-
nels. In order to evaluate these countermeasures, we thoroughly analyse
several real channels (cache contention, bus contention, and the lucky
thirteen attack on DTLS), and demonstrate that these channels cannot
be fully understood without careful empirical analysis—undocumented
hardware behaviour has a dramatic effect on leakage.

• In Chapter 4 we present the formal machinery to verify probabilistic
security properties on realistic systems. We develop our formalisation
of pGCL—a language that rigorously fuses probability with nondeter-
minism and classical refinement. We demonstrate the effectiveness of
our proof mechanisation in Isabelle/HOL, the same system used for
L4.verified.

• We take this formalisation and, in Chapter 5, attack a large example: the
verification of a well known countermeasure against cache channels—
lattice scheduling. We demonstrate that, in addition to showing a classi-
cal trace-based noninfluence property, we can prove probabilistic asymp-
totic fairness, and incorporate the entire L4.verified proof stack. This
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result demonstrates that appropriately stated probabilistic results can be
composed with classical refinement, and integrated with large existing
proof artefacts.

• Finally, Chapter 6 links us back to the foundational theoretical results
of Chapter 2, by showing that we can recover standard information-
theoretic models from a concrete pGCL model of a guessing attack,
with a fully machine-checked proof. We demonstrate the link between
a program-oriented and a channel-oriented view of leakage. This is
reinforced by the connection we derive between the lattice of channel
bounds, and the refinement lattice in pGCL. The focus in this final chap-
ter on the kind of results can be attacked with the verification approach
established in the preceding chapters.





2 Covert and
Side Channels

This chapter expands on work first presented in the following paper:

David Cock. Exploitation as an inference problem. In Proceedings of the 4th
ACM Workshop on Artificial Intelligence and Security, pages 105–106, Chicago,

IL, USA, October 2011. ACM. doi:10.1145/2046684.2046702

We are concerned with the leakage of sensitive information from a system,
for example a password or an encryption key, through unexpected channels—
those that were not anticipated in the system’s specification. Our particular
focus is on predicting and rectifying such leaks in real systems software,
without assuming the ability to modify it. We assume that such imperfections
are inevitable, and consider what approaches we, as system implementors
can take to efficiently rectify them.

We begin by surveying the historical literature, to place this work in con-
text. Relevant contemporary work is summarised chapter-by-chapter. We
next establish our threat model (the guessing attack), and show that, despite
its problems, Shannon entropy can be used as a safe measure of vulnerability,
with appropriate corrections. We motivate each step of our theoretical devel-
opment by appealing to the features of a very simple side channel, due to a
common optimisation in the implementation of the C strcmp routine.

The message of this chapter is that the guessing attack is a sound and
broadly applicable threat model, and that Shannon entropy can be used to
give a safe bound on vulnerability, allowing us to use standard results in
information theory.

5
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To make our case, we build a leakage measure from first principles, grad-
ually adding complexity (moving from a uniform distribution of secrets in
Section 2.3, to nonuniform distributions in Section 2.4, and finally imperfect
observations in Section 2.6), justifying at each point that the model matches
what we see in our example system (the strcmp channel of Section 2.2). We
show that in capturing the observed behaviour of this system, we are lead
naturally to Shannon entropy (and hence channel capacity) as a measure. We
show that despite its known limitations, we can nevertheless construct a safe
measure based on entropy, in Sections 2.5 & 2.7.

2.1 Background

Communication channels that bypass a system’s information flow policy have
historically been divided between side channels and covert channels [Wray,
1991]. The distinction is rather arbitrary, and mostly depends on the context in
which the channel is encountered. We emphasise the commonality between
the two, and focus on restricting the common, underlying mechanisms. We
further argue that channels that exploit explicit system behaviour (even if not
intended for communication) are effectively dealt with by existing techniques,
and thus restrict our attention to channels that lie outside these mechanisms.

Previous attempts have been made to produce general-purpose systems
which either limit or eliminate side and covert channels, motivated in particu-
lar by the US DoD Trusted Computer System Evaluation Criteria (the orange
book standards), which suggested a maximum bandwidth of either 1b/s for
general systems, with the ability to audit (detect) channels of more than 0.1b/s
[DoD, §8.0, page 80].

Digital Equipment Corporation’s VAX/VMM (virtual machine monitor)
[Karger et al., 1991] was designed as a high-security general-purpose system,
and was intended to be to be certified to TCSEC level A1 (the highest). The
design was inspired by the earlier KVM/370 [Schaefer et al., 1977] project
to retrofit a secure virtualisation layer to IBM’s existing VM/370 mainframe
operating system. While the project did not achieve its goals, it pioneered
several mitigation techniques, namely fuzzy time [Hu, 1991, 1992b] and lattice
scheduling [Hu, 1992a], both of which we analyse later.

While other work has focussed on producing provably secure hardware
[Greve and Wilding, 2002], we are attempting to build secure general-purpose
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systems on commodity hardware.

Side channels are those in which supposedly hidden information, for ex-
ample an encryption key, is accidentally signalled on a public medium. Here,
the concern is whether a carefully-designed, and trusted, system might re-
veal a secret through unexpected means, for example its power consumption
[Kocher et al., 1999], execution time [Wray, 1991; Brumley and Boneh, 2003],
or even (acoustic) noise output [Backes et al., 2010].

Interest in side channels arose in connection with cryptography and sen-
sitive (particularly military) communications. The deliberate interception of
radio signals, including inadvertent emanations from field telephones, dates
back at least to 1915 [Cryptome, 2002], however in these cases no particular
effort was made to hide the sensitive signal—these were not protected systems.
Side channels in the form we usually consider: unanticipated emanations
from a protected system, were recognised in cipher machines at least as early
as the 1940s, as detailed in documents recently declassified by the United
States’ National Security Agency (NSA) [NSA, 1972].

An example from this document is the discovery that a particular en-
cryption device (the 131-B2) produced visible spikes on the display of an
oscilloscope on the opposite side of the room, and that by analysing these,
the unencrypted plaintext could be recovered. This is a device that was de-
signed to protect sensitive data (although only limited detail is available in the
redacted public document), indeed specifically to allow it to be sent over un-
secured radio channels, which was nevertheless compromised by additional,
unintentional radiation. In this example, the secret (the plaintext) is correlated
with a publicly observable variable (the radiation).

In this work, we consider timing channels, where the observed variable is
the execution time of a program, or the relative arrival times of a series of
messages. While the physical details are different, when viewed as abstract
communication channels these examples are equivalent.

Covert channels are those in which information is deliberately leaked by a
compromised insider, the “trojan horse”. Interest in covert channels arose with
the advent of multiprogrammed systems and utility computing [Lampson,
1973], where a third-party component (for example, a library routine) might
be used to process sensitive data. In this scenario, the owner of the data (the
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client) wants to be assured that the library routine cannot leak that data to an
external accomplice, no matter how hard it tries. Interest in covert channels
(and locally-exploitable side channels) is re-emerging with the adoption of
cloud computing [Ristenpart et al., 2009], which is beginning to fulfil the
promise of utility computing, but is naturally subject to the same risks.

It is important to note that the set of leakage mechanisms available to
the Trojan are exactly the same as those used by a side channel. The only
difference is intent. As it is being exploited deliberately, a covert channel
may well be used more efficiently, relative to its theoretical capacity, than the
equivalent side channel, but the two are otherwise equivalent. In particular, a
bound on the ability of the channel to transfer information provides an upper
bound on the bandwidth achievable in either case. Therefore, for an identified
leakage mechanism, we focus on minimising this channel capacity, recognising
that doing so prevents its exploitation in either case.

Storage channels form part of another, orthogonal, scheme for classifying
leakage channels [Lampson, 1973; Lipner, 1975; Kemmerer, 1983, 2002]. Here,
the distinction is between channels that exploit the ability of (for example) a
trojan horse to store information in an unexpected location, to be read back
later by its accomplice. These channels range from the relatively straight-
forward (e.g. a hidden CPU register [Sibert et al., 1995]), through the subtle
(e.g. disk arm positioning [Karger and Wray, 1991]), to the fiendish (e.g. modu-
lating processor temperature by loading the CPU [Murdoch, 2006]). A storage
channel may be exploited as either a covert or a side channel.

Timing channels are the complement of storage channels, in the classical
taxonomy. A timing channel carries information in the relative timing of
events, even if the values delivered are constant. This division assumes a
model of what the receiver sees: it observes the system at a series of instants,
at each of which it may inspect that part of the state that is visible to it. If the
sender can affect the state visible to the receiver at any instant, this is a storage
channel, while if it can affect the timing of these instants (but not necessarily
any observable value) we have a timing channel.

Wray [1991] argued convincingly that this distinction is arbitrary, giving ex-
amples of channels that can be classified as either storage or timing channels,
depending on how they are exploited. Both the disk-arm and processor-
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temperature channels are examples. While both “store” a real value (the arm’s
current position relative to the spindle, and the processor’s current tempera-
ture), the most practical (but not necessarily the only) way of measuring both
is to use time: for the disk arm, as noted by Wray, measuring the time to seek
to a known block reveals the arm’s starting position, while measuring either
execution speed (for a processor employing thermal throttling), or clock skew
[Murdoch, 2006] gives a rough estimate of temperature.

We instead classify channels in a way directly relevant to our work—by
the techniques used to analyse them:

Functional leakage is our term for any leak demonstrated by the functional
specification of the system. This definition is motivated by our experience with
seL4 [Klein et al., 2009]. The seL4 microkernel is modelled as a transition
system, with the kernel mapping the combined machine and kernel state on
entry, to a modified state on exit. Any leak via kernel mechanisms (for example
in the observed scheduling order or failure to clear memory or registers when
switching between domains), is visible in this model. The absence of such
channels has been formally established for Murray et al. [2013], with a fully
mechanised proof. This is roughly equivalent to a storage channel.

There may, of course, be channels that exist in the implementation which
are not captured by the specification, for example a hidden register that we
have failed to model. We would still consider this to be functional leakage,
and treat this as a specification bug (either of the kernel or, more likely, of the
hardware). Work is ongoing to discover and fix such bugs.

Once we consider the specification to be both complete and correct, we
define any leakage that it implies to be intrinsic i.e. the leakage that is a un-
avoidable, in correct operation. If the system is intended to be noninterference-
secure [Goguen and Meseguer, 1982] (a very strong notion of isolation), then
this intrinsic leakage must be zero. We rate an implementation by how close it
comes to the intrinsic leakage of its specification: the additional leakage due
to implementation artefacts should be as close to zero as possible.

Non-functional leakage is the complement of functional leakage—anything
not expressed by the specification. An example, in seL4, is timing: the spec-
ification states only what changes the kernel makes to the state, but says
nothing about how long it takes to make them. This captures, by definition,
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1 i n t
2 strcmp ( const char ∗p1 , const char ∗p2 ) {
3 r e g i s t e r const unsigned char ∗ s1 =
4 ( const unsigned char ∗ ) p1 ;
5 r e g i s t e r const unsigned char ∗ s2 =
6 ( const unsigned char ∗ ) p2 ;
7 unsigned reg_char c1 , c2 ;
8
9 do {

10 c1 = ( unsigned char ) ∗ s1 ++;
11 c2 = ( unsigned char ) ∗ s2 ++;
12 i f ( c1 == ’ \0 ’ ) return c1 − c2 ;
13 } while ( c1 == c2 ) ;
14
15 return c1 − c2 ;
16 }

Figure 2.1: strcmp, from GNU glibc 2.9 (edited for readability).

all remaining sources of leakage, but our classification is context dependent.
Time could be incorporated into the specification, as could any number of
physical variables (temperature, for example). There are two reasons to avoid
this: First, the specification would be more complex, and we have no good
reason to suppose that we could complete a formal proof equivalent to that for
the functional specification (even if we had a specification of the hardware’s
behaviour); Second, the question, by its very nature, is open ended. The
history of research into side channels in particular is one of the progressive
discovery of more and more leaks not covered by existing models. There must
therefore be a category for vulnerabilities that we haven’t found yet.

Any classification of channels is likely to be to some extent arbitrary, and
moreover to reflect the bias of the classifier. We settle on the functional/non-
functional distinction as it matches our verification approach, although we
shortly refine it into the notions of intrinsic and extrinsic leakage, reflecting the
distinction between leakage implied by a specification, and that added by an
implementation.
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2.2 The strcmp Channel

To illustrate the problem, we analyse a timing channel in common implemen-
tations of the C library’s strcmp (string compare) routine. We use this example
to illustrate our notions of vulnerability and channel capacity, and also to
motivate our threat model: the guessing attack.

Figure 2.1 is typical, from GNU glibc version 2.9 (edited for readability).
The comparison is performed by the loop at lines 9–13. This steps through the
strings in parallel (lines 10 & 11), until either the first ends (line 12, strings
are null terminated), or a mismatch is found (line 13). If the second string
is shorter, the loop terminates when its null terminator fails to match the
corresponding character in the first. The number of iterations, and thus
execution time, increases with the number of successful matches: the common
prefix length of the two strings.

An appropriate specification, expressed in Higher-Order Logic1 (HOL),
is as a function from a pair of strings to a truth value, abstracting from the
details of the implementation:

strcmp :: string× string→ bool

strcmp (s1, s2) ≡ (s1 = s2)
(2.1)

If an attacker observes the execution time sufficiently closely, then he or
she learns much more than this simple specification indicates. The imple-
mentation leaks more than the specification allows (the intrinsic leakage)—the
non-functional leakage in this example is substantial. Defining and measuring
this occupies the remainder of the chapter.

A Guessing Attack on strcmp

Imagine that our attacker is trying to guess a password by repeatedly invoking
a password checker that uses strcmp. Usually, a guessing attack is expensive:
exponential in the length of the password. We will see, however, that with the
addition of side-channel leakage, this becomes linear.

We begin by calculating the vulnerability given only the intrinsic leakage
implied by Equation 2.1.

1HOL is a formal logic for mathematical specification and proof. We make heavy
use of HOL in later chapters, where we mechanically verify leakage properties. For
the moment, it is sufficient to consider this specification as an implementation in a
functional language, such as Haskell or ML.



12 CHAPTER 2. COVERT AND SIDE CHANNELS

2.3 Leakage with a Uniform Prior

Assume, for now, that all secrets are equally likely (perhaps generated uni-
formly at random), and that the attacker knows the precise execution time.
This is the simplest case, and we relax both assumptions shortly.

Suppose that the attacker supplies a string of its choice (a guess), which
the system compares against its secret, answering yes (for a match) or no (for
a mismatch). Let the secret consist of n characters, drawn from an alphabet of
m symbols, givingmn possibilities. Assume that this is known to the attacker.
If the secret is chosen uniformly, the attacker has no reason to suspect that
one secret is more likely than another, and may as well guess in any order.
After each guess, either the secret is found (the system answered yes), or the
attacker eliminates a possibility.

As all remaining secrets are equally likely, the chance of guessing correctly
at each step is one over the number of possibilities remaining: The chance that
the next guess is correct, having made k incorrect guesses, is

V0(k) =
1

mn − k
(2.2)

The subscript 0 indicates that this is the probability of compromise given
no additional information. This gives an obvious, fundamental measure of
vulnerability:

Definition 1 (One-Guess Vulnerability): For a system subject to guessing,
the one-guess vulnerability, V0, is the chance that an optimal (computationally
unbounded) attacker can compromise it in a single attempt, given no extra
information.

This has the benefit of being succinct, easily stated, and obviously applica-
ble. The downside, as we’ll see, is that it is generally impractical to calculate.
We thus focus on efficiently approximating, or bounding, V0.

Any definition of vulnerability is, implicitly or explicitly, made with refer-
ence to a threat model—ours is the guessing attack. This may appear limiting,
but it’s not. The class of systems vulnerable to guessing is very broad: We
can include any system that authenticates using a secret. We can also include
most applications of cryptography. A protocol for authenticity (e.g. a digital
signature) is subject to guessing in exactly the same manner as a password
(keep guessing until the signature matches). A guessing attack against a confi-
dentiality protocol (e.g. message encryption) is also simple, if the ciphertext
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Figure 2.2: Vulnerability (V0) vs. number of guesses (k), for strcmp with no
side channel, wherem = 3, n = 3.

is known. The attacker can conduct an offline guessing attack (in contrast
to the online attack against the password checker), by trying keys one at a
time, until the message is decrypted. The attacker has a nonzero (though
vanishingly small) chance of guessing correctly on the first attempt. We do
need to assume that the attacker is able to recognise valid plaintext. Thus,
one-time-pad encryption is not vulnerable to guessing [Shannon, 1948].

Returning to our example, Figure 2.2 plots V0 given only intrinsic leakage,
for m = 3 and n = 3: secrets of length 3 drawn from an alphabet of 3
symbols. We see that vulnerability initially rises very slowly (the vertical
scale is logarithmic, to better discriminate smaller values), and reaches 1
(compromise) after 26 guesses. At this point, the attacker knows that there is
only one possible secret, of the initial 33 = 27.

How does adding a side channel affect V0? That is, how does the leakage
added by the implementation of Figure 2.1 compare to the intrinsic leakage of
Figure 2.2? Clearly, V0(0) will not change, as leakage is only observed after
guessing. We only deviate after the first guess, and if the attacker is optimal,
vulnerability only increases (on average) given more information. Note that
the curves must meet again after mn − 1 guesses, as with only one secret
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remaining in either case, the attacker will guess correctly with probability 1.

How does the curve behave between k = 0 and k = mn − 1? Recall
that the we leak the execution time of the strcmp routine, which exposes
the common prefix length of the guess and the secret. Take the place of the
attacker. Knowing the prefix length, we attack the positions individually: To
find the first, we generatem strings of length n, differing in the first position,
and pass these to the system. m − 1 of these will fail to match in the first
position, and thus the loop will execute once (as it is post-checked). One,
however, will match, and we will see at least 2 iterations. The string giving
the longest runtime thus has the correct character in the first position (and
possibly more). Repeat for the remaining characters: Once i positions are
known, we find position i (strings are zero indexed), by setting 0 . . . i− 1 to
their known values, and varying i, looking again for the greatest response
time.

The Vulnerability Model

Given this strategy, we can calculate V0(k). Every incorrect guess now elimi-
nates not just one, but a set of secrets: when 0 . . . i− 1 are known (thus we’re
guessing position i), if we see only i+ 1 iterations, our guess for i was wrong.
This eliminates not only our guess, but any that match it in its first i positions
(mismatches in 0 . . . i− 1 have already been ruled out, by induction). If we see
i+ 2 or more iterations however, we have the correct character in position i
and eliminate all other possibilities.

With leakage, plotting V0 against time is much more complicated. Fig-
ure 2.3 shows all possible traces form = 3,n = 3 (in red), with the number of
guesses along the horizontal axis, and the current value of V0 on the vertical.
A single trace begins at {0, 1/27}, at the bottom-left, and on each guess moves
one step right and some number upward (as it may guess several positions at
once). The shaded circles show the likelihood of reaching a state, normalised
by column. Thus, a circle at {k, v} gives P(v|k): the conditional probability of
seeing vulnerability v after k guesses. The vertical axis is logarithmic, as is the
vertex shading. The no-leakage trace is included (in blue), for comparison.

The increase in vulnerability is obvious: all traces reach V0 = 1 by the
6th guess, whereas the original attack took until the 26th. However, this only
compares the worst-case for each attack. How do they compare on average?
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Figure 2.3: strcmp attack traces with leakage for m = 3, n = 3, showing
vulnerability (V0) vs. number of guesses (k), and log2 P(V0|k) at each vertex.
Includes the no-leakage trace in blue for comparison
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Figure 2.4: strcmp attack traces form = 6, n = 6, showing vulnerability (V0)
vs. number of guesses (k), and log2 P(V0|k) at each vertex. Includes the 10th,
50th and 90th percentiles for P(V0|k).



16 CHAPTER 2. COVERT AND SIDE CHANNELS

Increasing tom = 6 and n = 6 gives Figure 2.4. Here we drop the traces,
leaving only vertices, for clarity. They follow the same pattern as in Figure 2.3.
We also drop the no-leakage curve, as it never rises high enough to be visible:
it now takes until k = 66 − 1 = 46, 655 to reach V0 = 1 without leakage, with
all leakage traces terminating by k = 30.

Including the median (blue) and the 10th and 90th percentiles gives a
feeling for the distribution of traces: 90% lie above the 10th percentile (the
rightmost red curve) at any given k. Note that a trace may cross a percentile,
and that the percentile itself does not (necessarily) represent a trace. We see
that 90% of all traces find the secret in no more than 15 guesses, with half
taking less than 9. The distribution is thus clustered to the left, with a long
right-hand tail. The worst-case length (the defender’s best case) is thus an
overestimate and a poor guide to likely vulnerability. The best-case is likewise
a dramatic underestimate: 1 guess.

How can we quantify this increase in vulnerability? Figure 2.4 contains all
the information we need, certainly, but we want a summary measure. There
are two reasons: Firstly, the full distribution is a clumsy way to describe the
system; Secondly, and more importantly, we can’t generate these figures for
anything more than toy examples.

As a measure, V0 isn’t good enough on its own as it only refers to the
current state and doesn’t take into account any future leakage. Consider
Figure 2.4 again, and imagine that we are on a trace similar to the (blue)
median. Suppose we reach V0 = 1/64, after 6 guesses. Taking only V0 into
account (given our uniform search space), there are 64 = 1296 equally-likely
secrets which, given no extra information, would take on average 648 further
guesses. From the figure however, we expect to get the secret correct in only 3
additional guesses! Using only V0, we would assign this outcome a probability
of only 3/1296. We thus need to take future leakage into account.

We must note that we are making a qualitative judgement regarding what
we want in a security measure. Our strawman (the expected number of
guesses remaining), exemplifies one particular style of measure: expected time
to compromise. This example, where we ignore future interaction with the
system, and let the attacker perform, say, an offline brute-force attack, is
known as the guessing entropy[Massey, 1994], and is defined as:∑

i

iP(xi)
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where the xi are the list of possible secrets, arranged in order of decreasing
likelihood.

These measures are widely used, and intuitively reasonable, in the field
of cryptography, where the primary concern is often with a well-resourced
attacker performing an offline cryptanalysis (essentially a sophisticated guess-
ing attack) against captured ciphertext. Here, the argument is in terms of the
cost of the attack, relative to the value of the secret, and is quantified by the
work factor of a cryptosystem.

The difficulty in applying such a measure here is that it depends critically
on the assumption of uniformity. For a cryptographic key or a nonce2, a great
deal of effort is made to ensure the uniformity and unpredictability of the
secret, and thus this assumption holds. In the case of a password, or the
leakage of sensitive control-flow information, this assumption does not hold.
Passwords in particular are well recognised, ([Dell’Amico et al., 2010; Malone
and Maher, 2012]), to be non-uniformly distributed, with some astonishingly
common. In this case, knowing the expected time to compromise gives us
little confidence in the security of the system.

In the extreme, if we have one secret of probability 0.99, and 10100 secrets
of probability 10−102, the expected time to compromise is roughly 0.99× 1 +

0.01× 10100/2 ≈ 1098, an enormous number. The probability of compromise
in a single guess however, is 99%! We cannot assume uniformity on secrets,
and we must judge a system like this to be insecure. We therefore use expected
chance of compromise, rather than expected time to compromise. The one-guess
vulnerability is a simple example of such a measure. The advantage is that
we avoid the above problem; The disadvantage is these measures are often
difficult to calculate, as already established for strcmp.

We now show that we can, with appropriate care, bound chance of compro-
mise, given only an average security measure. This allows us to combine the
simplicity of time-to-compromise, with the rigour of chance-of-compromise.

This problem, the disconnect between chance-of-compromise and time-
to-compromise, was recognised by Smith [2009], specifically between the
Shannon entropy and the min entropy. The Shannon entropy is a summary
measure that we will introduce shortly, while the min entropy is a worst-case
measure, and is equivalent to V0. There has been a great deal of interest in

2A nonce is a randomly-selected single-use token. Its most important property is
that it should be unpredictable to an attacker, and is thus usually selected at random.



18 CHAPTER 2. COVERT AND SIDE CHANNELS

min entropy as a vulnerability measure [Espinoza and Smith, 2013], leading to
the recent work of Alvim et al. [2012], showing that when generalised (to gain
functions), it subsumes most other measures. Our contribution is to show that
while the worst case is indeed as established, this only occurs for pathological
distributions, and that if care is taken, Shannon entropy can be used safely.

Multiple Guesses

To incorporate leakage across multiple steps, we extend our measure from
one guess (and no observations) to many:

Definition 2 (k-Guess Vulnerability): The system is compromised once V0 =

1, i.e. the attacker knows the secret, and is certain to guess correctly on its next
attempt. The k-guess vulnerability, or Vk, is the probability that the system
will be compromised given at most k guesses. That is, it is the probability that
V0 = 1 after k guesses (and k− 1 observations, for 0 < k).

For any k, Vk+1 is at least as high as Vk: An extra guess gives the attacker
another attempt, which succeeds with non-negative probability. We apply the
measure by setting k appropriately: If we’re analysing a password checker
that allows only three tries before disabling logins, then setting k to 3 gives
the probability of compromise. In a cryptographic setting, k might indicate
the attacker’s estimated computational power: If we’re confident that the
attacker can’t process more that, say, 109 keys in a reasonable timeframe then
V109 again gives the overall chance of compromise.

Figure 2.5 shows vulnerability against time (number of guesses) for the
m = 6,n = 6 example. This plot is generated from the same data as Figure 2.4.
Vk is plotted in orange, and rises to one by about the 10th guess. Let V0(k) be
the expected vulnerability after k guesses, assuming that the secret hasn’t been
guessed yet. From this, we can reconstruct Vk as:

Vk = V0(0) +
(
1 − V0(0)

)
×
[
V0(1) +

(
1 − V0(1)

)
× . . .

]
That is, the probability that we guess by the kth attempt is the probability that
we guess on the first attempt, plus the probability that we don’t multiplied by
the probability that we guess correctly somewhere between attempt 1 and k,
given that we guessed wrong at 0.

We can thus translate between the two measures, and will calculate using
V0(k) from now on. We see the benefit by considering the remaining curves
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Figure 2.5: k-guess vulnerability (Vk) vs. k, for m = 6,n = 6, together
with expected one-guess vulnerability (V0(k)). Also shown are the expected
uncertainty set size (E(1/V0(k))), and the linear trend assuming 1 position is
found every 3 guesses, showing roughly log-linear behaviour.

in Figure 2.4. V0(k) is plotted in green, and as we see it always lies below Vk:
This is as we expect, as it considers only the probability of terminating on
guess k, and ignores the probability of terminating earlier.

Recall from Equation 2.2 that V0, the one-guess vulnerability, is inversely
proportional to the number of possible secrets remaining, as they are uniformly
distributed. Thus, the reciprocal of V0 in any state is the size of this uncertainty
set. We plot the expectation of this value in red, that is, the size of the expected
uncertainty set. This shows how many secrets remain, on average, after k
guesses. Rather than directly measuring security, as V0 does, this quantifies
the amount of work remaining for the attacker—a time-to-compromise measure.
This curve shows us something interesting: Up to 15 guesses (at which point
the system is almost totally compromised), the logarithm of the uncertainty-
set size decreases more-or-less linearly (note that the left-hand vertical scale is
logarithmic).

The blue line gives a lower bound on this size, and hence an upper bound
on leakage. Here we see that the size of the uncertainty set decreases by a



20 CHAPTER 2. COVERT AND SIDE CHANNELS

factor of 6, approximately every 3 guesses. This is equivalent to saying that
the attacker guesses one position per 3 attempts, which is what we expect
given that there are 6 possibilities per position. This tells us that vulnerability
is approximately log-linear: the ratio of the set sizes remains roughly constant
for a given interval. This suggests a logarithmic definition of leakage:

Definition 3 (Uncertainty Set): For a leakage profile in which the set of
possible secrets is always uniformly likely, let Su be this uncertainty set: the set
of secrets of nonzero probability. The uncertainty set measure is then the size
of this set:

Vu = ‖Su‖ (2.3)

Leakage is the ratio of vulnerability between two states:

Lu =
‖Su‖
‖S′u‖

(2.4)

Note that, if the probability is uniform, V0 = 1/Vu, and the two measures are
equivalent.

The power of this definition is that we have a single summary measure
both for vulnerability (Vu), and for leakage (Lu), that in our example allows
a fair approximation by a simple linear model. We will see shortly that
this measure also remains useful when we abandon first the assumption
of uniformity (Section 2.4), and then of complete knowledge (Section 2.6).
Generalising leads us eventually to Shannon entropy (Equation 2.10).

Limitations

Before we continue, we need to recognise the limitations of this model. In
deriving this measure from Vu, we have thrown away information. Recall
that we started by noting that 1/V0 = Vu, thanks to uniformity. From this, we
hypothesised that 1/E(Vu) might be a useful approximation to Vn = E(1/Vu).
Note that, in general, E(1/X) 6= 1/E(X): the expectation does not commute
with the reciprocal. The two measures are plotted together in Figure 2.6. We
see that, while our estimated vulnerability curve (red) has roughly the same
shape as the true curve (green), it is offset to the right by about 12 guesses.
That is, it predicts that a given degree of compromise will occur 12 guesses
later than it really does, and thus underestimates vulnerability.

Why is this such an underestimate? We’d like to take advantage of the
linear relationship we discovered in Figure 2.5, which would give us a single
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Figure 2.6: Expected vulnerability, and vulnerability estimated from expected
uncertainty set size, showing the similar shape of the curves.

number (the slope), as the constant leakage rate of the system. The fact that
the two curves have a similar shape is suggestive, and if we were to shift our
estimate left by 12 guesses, we would have a reasonable approximation to the
true vulnerability (for this system, at least). Is there any way in which this is
theoretically justifiable? Luckily enough, there is.

As noted, a summary measure throws away information. In particular,
there may be many distributions with a given E(V0), but for these, 1/E(1/V0)

will generally differ. Recall that in calculating V0(k), we are working with a
distribution on the states of the system after k guesses. The only quantity that
matters for the calculation of V0 is the size of the uncertainty set, which ranges
from 1 tomn.

We can still bound the range of values that the true vulnerability, E(V0),
may take. The question is: what is the largest possible value of E(V0) for any
distribution for which 1/E(1/V0)) is known? The answer is relatively simple
as, while the function 1/x is not linear, it is (anti-)monotonic.
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Pessimistic Correction

Lemma 1 (Maximising the Reciprocal Expectation): Let X be a random
variable, ranging over the integers [1,n]. For any fixed y, over all distributions
where E(X) = y, E(1/X) is maximised when all probability mass is assigned
either to 1 or to n.

Proof. See Appendix A

Lemma 2 (Pessimistic Correction of Expected Uncertainty Set): For a secret
of length n, drawn uniformly from an alphabet of sizem, the greatest possible
expected vulnerability, E(V0), over all distributions where E(1/V0) is held
constant, is:

1 −
1
mn

−
E(1/V0)

mn
(2.5)

Proof. First, we use the fact that V0 = 1/‖Su‖ to instead look for the maximal
value of E(1/‖Su‖), where E(‖Su‖) is known. By Lemma 1, this must be
attained by a distribution that assigns nonzero probabilities only to ‖Su‖ = 1,
and ‖Su‖ = mn. There is only one such distribution, satisfying the linear
equations:

P(‖Su‖ = 1) +mnP(‖Su‖ = mn) = E(‖Su‖)

P(‖Su‖ = 1) + P(‖Su‖ = mn) = 1

solving gives:

P(‖Su‖ = 1) =
mn − E(‖Su‖)

mn − 1

P(‖Su‖ = mn) =
E(‖Su‖) − 1
mn − 1

whence,

E(1/‖Su‖) = P(‖Su‖ = 1) +
P(‖Su‖ = mn)

mn

=
mn − E(‖Su‖)

mn − 1
+
E(‖Su‖) − 1
mn(mn − 1)

= 1 −
1
mn

−
E(‖Su‖)
mn
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Figure 2.7: Pessimistic correction of the uncertainty-set measure.

We use Equation 2.5 to transform the expected uncertainty set size in
Figure 2.5 to a safe upper bound on vulnerability, as plotted in Figure 2.7. We
see that while our new bound is pessimistic, it is safe. Moreover, we can apply
it to the linear model of Figure 2.5 (1 position every 3 guesses), to get a very
similar, and also safe upper bound.

Summary We have established that in the case of a uniform distribution on
secrets, leaking the common prefix length dramatically shortens a successful
guessing attack against strcmp (Figure 2.2 vs. Figure 2.3). While the number of
optimal attack traces is large, they are unevenly distributed, with short traces
being most likely, and a long tail (Figure 2.4). While the expected vulnerability
grows rapidly and non-linearly, we see that during most of the attack, the
attacker’s uncertainty set shrinks geometrically: log|Su| is approximately linear,
with a slope of log 6/3, corresponding to our intuitive model of one position
guessed on average, per 3 attempts.

From a log-linear model of leakage, we reconstruct a safe bound on ex-
pected one-guess vulnerability (V0), by establishing how far the true set size
can deviate from its expectation. We are thus able to use a model that matches
the observed behaviour of the system (linear leakage) but that is nonetheless
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safe. We model the system using a single parameter: the leakage rate, while
retaining a safe bound on vulnerability.

2.4 Leakage with a Nonuniform Prior

We have so far assumed that secrets are chosen evenly at random—that the
attacker’s prior distribution is uniform. Imagine instead that the secrets are
chosen according to some distribution PS. How does this change our results?
There are two reasons to relax this assumption: First, we may be dealing
with secrets that really are non-uniform (passwords, or the output of a weak
random number generator); Second, as the attacker makes observations, it
will begin to consider certain secrets to be more likely than others (those that
are more likely to produce the output that it’s seen). Thus, after some number
of observations, the attacker’s beliefs form a non-uniform distribution, and
we’d like to quantify how much more vulnerable the system has become.

Let us return first to the one-guess vulnerability, V0 (Definition 1). Here
there is little change. Where previously it didn’t matter which secret (of those
with nonzero probability) the attacker guessed, an optimal attacker will pick
the most likely. Thus in general,

V0 = max
s
PS(s) (2.6)

This formula is still valid in the uniform case, albeit trivial.
What about our uncertainty set measure? We’d like to retain the simple

linear leakage model, but is this possible? First, we need to establish the
optimal attack strategy. Under uniformity, all guesses were equally good,
but that is no longer true. The attacker obviously maximises its chance of
guessing correctly straight away, and hence V0, if it chooses a secret that
maximises PS(s) i.e. one of those that are most likely (there may be more than
one). However, it is not obvious that doing so maximises its chances for a later
guess, if the first one fails. We could imagine a situation where the top two
secrets have almost, but not quite, identical probabilities. It might also be the
case that if we guess the less likely of the two, the side-channel information
will reveal the correct value to us, even if our guess was incorrect. In this
contrived example, we would maximise V0 by guessing the first secret (the
most likely), but we would maximise Vn for any 1 6 n by guessing the second.
We could not do both. In this case, we could be optimal with respect to V0 or
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to Vn, but not both. We must therefore further analyse the leakage that our
strcmp example actually produces, to establish the optimal attack.

Detailed Analysis of an Optimal Attack

We first note a standard result in probability:

Lemma 3: Any joint distribution P(X1, . . . ,Xn) over a set of n random vari-
ables (not necessarily independent), can be expressed in terms of incremental
conditional distributions:

P(x1, . . . , xn) = P(xn|xn−1, . . . , x1)P(xn−1|xn−2, . . . , x1) . . .P(x1)

=
∏
i

P(xi|xi−1, . . . , xn) (2.7)

Proof. This is a standard result, and follows from the definition of conditional
probability.

Let si be the character in position i in the putative secret, s. The probability
that the secret is in fact s is then the joint probability that all positions are
correct, or P(s1, . . . , sn). By Lemma 3, we may rewrite this as the product of
the conditional probabilities P(sk|sk−1, . . . , s1)—the probability that the kth

position is sk, given that the first k− 1 positions have values s1 through sk−1.

Consider an attack that has exposed j − 1 positions: s1 through sj−1 are
now known. If the attacker wants to maximise its chance of a successful guess,
to optimise V0, it needs to choose the most likely values for the remaining
positions, given what it now knows — it needs to choose sj through sn to
maximise P(sn, . . . , sj|sj−1, . . . , s1). A computationally unbounded attacker
must be assumed to be capable of finding such an assignment.

Suppose, alternatively, that the attacker wants to maximise its chance of
guessing correctly on the next try, assuming that the current guess is incorrect
(a reasonable assumption in the early stages of an attack). In this case, the
attacker is seeking to maximise the leakage due to the next guess, or V0(k +

1) − V0(k). Considering only position j, there are two possibilities, if we fail to
guess correctly: either sj was wrong, in which case we strike it from our list of
possibilities and keep trying at position j, or it was correct, in which case we
eliminate every other possibility and continue guessing at some later position
(not necessarily j+ 1). What is the effect on V0 in each of these cases?
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To answer this, we recall another standard result, Bayes’ theorem:

P(h|e) =
P(e|h)P(h)

P(e)
(2.8)

This result is the foundation of statistical inference: it formalises the process
of updating a statistical model, given new evidence. To see this, it is helpful
to rewrite is in this form:

P(h|e) =
P(e|h)

P(e)
× P(h) (2.9)

This is a recipe for converting P(h), the probability that hypothesis h holds
given no additional evidence (the prior probability of h), into P(h|e), the prob-
ability that h holds, once we have observed the evidence, e (the posterior
probability of h). The important point is that this is exactly what the attacker is
doing: It begins with some idea, or belief, of how likely each secret is (initially
we assumed this to be the uniform distribution, which assumption we now
relax), and given the evidence that it observes (the intrinsic leakage—the
match/mismatch response, and the side-channel leakage—the common prefix
length), updates its belief, making some secrets less likely, and others more.
Equation 2.9 tells us how an optimal attacker does this: the prior probability of
a secret, P(s), is multiplied by the probability of seeing o, if the secret were s,
or P(o|s) (the consequent probability of o), divided by the probability of seeing
o in any case, or P(o). This factor is the evidence ratio.

We apply Equation 2.9 to calculate the posterior probabilities for a correct,
and an incorrect guess at position j. Suppose first that our guess was wrong:
that is, we observed a common prefix length (cpl) of j− 1. The probability of
observing this, if the jth character really were sj is zero:

P(cpl = j− 1|sj, . . . , s1) = 0

Thus, the evidence ratio is zero, and so is the posterior probability that sj is
correct, knowing that the first j − 1 characters are correct, but having observed a
common prefix length of only j− 1:

P(sj|cpl = j− 1, sj−1, . . . , s1) = 0

What about the other possibilities, the other characters that we might have
guessed? For each of these, say s′j, the probability of the evidence is one. That
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is, if the correct value is s′j but we guessed sj, then the common prefix length
must be j− 1:

P(cpl = j− 1|s′j, . . . , s1) = 1

This time, we need to evaluate the denominator—the prior probability of the
evidence. This is the probability of seeing a prefix length of j− 1, given that
we guessed sj, without knowing whether or not our guess is correct. Here we use
the decomposition introduced in Lemma 3. Given that s1 through sj−1 are
correct, the probability that the prefix length is only j − 1, is the probability
that the position sj is wrong, given that the first j− 1 positions are correct:

P(cpl = j− 1|sj, . . . , s1) = 1 − P(sj|sj−1, . . . , s1)

Thus, for any secret that matches s1 through sj−1 and sj, the posterior prob-
ability is zero–it’s been ruled out (any mismatches between s1 and sj−1

have already been ruled out by induction). Any secret that matches s1

through sj−1 but doesn’t match sj has its probability increased by a factor of
1/(1 − P(sj|sj−1, . . . , s1)). Note that any secret whose probability is already
zero remains ruled out. The effect is thus to rule out a set of secrets, and
uniformly scale up the probabilities of all the remaining possibilities, such
that the sum is still one.

What if we guessed correctly? In this case the probability of every secret
that doesn’t match at sj should go to zero, and we see that this is exactly what
Bayes’ rule gives us. The probability of seeing a prefix length of j or more,
were the correct value anything other that sj is zero, and thus:

P(cpl > j|s′j, . . . , s1) = 0

From this we see that the posterior probability does indeed go to zero. On the
contrary, if the correct value were sj, we must see a prefix length of j or more:

P(cpl > j|sj, . . . , s1) = 1

We must again consider the probability of the evidence, which is now the
probability that our guess is correct, or:

P(cpl > j|sj, . . . , s1) = P(sj|sj−1, . . . , s1)

and thus

P(sj|cpl > j, sj−1, . . . , s1) =
1

P(sj|sj−1, . . . , s1)
× P(sj|sj−1, . . . , s1) = 1
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Figure 2.9: The attack in Figure 2.8 after guessing ‘caaa’ and seeing a pre-
fix length of 2. The left subtree has been eliminated, and the conditional
probabilities of the others adjusted, changing the probabilities at the leaves.

So in this case, all secrets that don’t match at sj are ruled out, while all those
that do are scaled up by a factor of 1/P(sj|sj−1, . . . , s1).

This is not the only inference we can make, however. It’s always possible
that we have guessed more than one additional character correctly: cpl could
be anywhere from j to n. In this case, we eliminate even more possibilities—
those that don’t match at some point between j and cpl, inclusive. To visualise
this, it is useful to view the space of secrets as a tree. Figure 2.8 illustrates
the attacker’s distribution over secrets, partitioned according to Equation 2.7,
withm = 3 and n = 4. The attacker knows that the first two characters are ‘c’
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Figure 2.11: The attack in Figure 2.8 after guessing correctly that position j
is ‘a’, and that position j+ 1 is ‘b’. The middle and right subtrees have been
eliminated, as have ‘a’ and ‘c’ in the final row.

and ‘a’, and is attempting to guess the third. In this example, the distribution
of secrets is initially uniform, and is recorded in the final row of the figure,
under the leaves. The probability at a leaf is the probability of the secret spelt
out by following the path from the root. For example, the probability that
the secret is ‘cacb’ is 1/9. This is the product of the probabilities attached to
the edges along the path, in this case P(c) × P(a|c) × P(c|ac) × P(b|cac), or
1× 1× 1/3× 1/3.

Observing the response lets us update the conditional probabilities along
the edges between the last known position and the observed prefix length.
For example, Figure 2.9 shows the result of guessing incorrectly at position
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3. Here, the subtree rooted at the first incorrect character, s3, is eliminated
and the conditional probabilities leading to the others are scaled accordingly.
Note that only the conditional probability for the guess we actually made is
updated: the conditional probabilities lower in the eliminated subtree are not
changed, but the zero at the root ensures that any path through that subtree
has probability zero.

Figure 2.10 shows the result of a correct guess against position 3, which
fails at position 4, corresponding to an observed prefix length of 3. Here all
other subtrees at depth 3 are eliminated, as is the subtree at depth 4 rooted
at our first incorrectly guessed position. Finally, Figure 2.11 shows what
happens when more than one position is guessed at once: all other subtrees
are eliminated at every level down to the first mismatch. In this case, we have
guessed the entire secret correctly, but if there were further levels, the subtree
corresponding to our hypothetical mismatch at level 5 would be eliminated,
as for Figure 2.10.

Note that in every case, we eliminate some number of subtrees and scale
the rest uniformly. Importantly, this means that if the secrets are ordered by
probability then this does not change, we simply knock holes as we go. This
makes simulating the attack tractable.

So far we have considered only intrinsic leakage. The effect of adding side-
channel observations is to change the relative weights of the branches that are
left un-pruned, and thus the bottom-row probabilities for complete secrets.
We have left this out of our discussion so far, but it does not effect the basic
pattern of pruning a branching model that we have established. It is taken into
account in the following section, where we simulate a statistically-optimal
attacker.

Updating the Leakage Model

This attack strategy is too complicated to analyse exactly, as we did in the
uniform case, especially as it depends on the details of the prior distribution
on secrets. To understand how it behaves, we instead run an exhaustive
simulation. We attack every possible secret with two strategies: one that picks
the most likely guess (maximising V0), and one that guesses to maximise the
conditional probability at each branch (maximising leakage, or V0(k + 1) −
V0(k)). To keep the simulation tractable, we assume that the distribution on
secrets is Markovian: the probabilities for position j+ 1 depend only on the
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Figure 2.12: Comparison of one-guess vulnerability (V0) and expected entropy
(H1) for a uniform, and a Markov prior. m = 6,n = 6.

character in position j. This is a reasonable model for the broad statistical
structure of natural text, in particular passwords, which is of clear relevance
to this particular example [Dell’Amico et al., 2010].

The benefit to tractability is that the incremental probabilities all collapse:
P(sj+1|sj, . . . , s0) is simply P(sj+1|sj)—every node in the tree has the same
pattern of conditional probabilities among its branches. We compress the
attacker’s model by only storing those branches that have been updated—any
branch that hasn’t yet changed is simply assumed to have its prior, Markovian,
transition probability. To unify the treatment of the initial character (as there’s
no previous character to transition from), we extend the alphabet with a
special ‘start-of-word’ character, ·. Our table of transition probabilities was
generated from the file alice_29.txt of the Canterbury data-compression
corpus [Arnold and Bell, 1997], representing the English text of Lewis Carroll’s
Alice in Wonderland [Carroll, 1865].

Figure 2.12 shows the result of an exhaustive simulation of the m = 6,n =

6 case (the alphabet was restricted by taking themmost common characters,
ordered by position-independent probability, and rescaling the transition
probabilities). Also reproduced are the equivalent results in the uniform
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case, from Figure 2.5. The expected vulnerability, V0(k), for the non-uniform
case is blue, while that for the uniform case is green. We see that the non-
uniform vulnerability follows roughly the same path as the uniform case, but
starts at a higher value. This is expected, as in a non-uniform distribution,
at least one secret must have greater-than-average probability. We see that
the known prior is roughly equivalent to an additional 4 guesses’ worth
of information. There was little or no difference between the two guessing
strategies: these results are for individually-maximised branch probabilities.
This is an interesting result in its own right, and means that the attacker may
as well optimise locally (for just the next character).

The two additional curves in the figure (red and yellow) need a little
more explanation. Rather than the expected uncertainty set size, as plotted
in Figure 2.5, we here plot the Shannon entropy, or H1. This is a quantity of
fundamental importance in information theory—a measure of the ‘size’ of
a set, taking into account uneven likelihood amongst its members. For a
distribution P, the Shannon entropy is defined as:

H1 = −
∑
x

P(x) log2 P(x) (2.10)

Here the logarithm is taken to base 2, giving an answer in bits. The entropy
under a different base differs only by a constant factor. Note that if the
distribution P is uniform i.e. P(x) = 1/|S|, then H1 = log2|S|. Thus, by plotting
Vu on a logarithmic scale, we actually snuck Shannon entropy in some time
ago, under the guise of the uncertainty set. The red curve in Figure 2.12
is thus identical to that in Figure 2.5. Importantly, the new yellow curve,
giving the expected entropy vs. guess number for a non-uniform prior has
the same slope, shifted down according to the difference in the initial entropy.
This gives meaning to our log-linear leakage measure: saying that ‘set size
drops by a factor of 6 every 3 guesses’ means that we are leaking (on average)
log2 6 ≈ 2.58 bits every 3 guesses, or 0.86 bits per guess. Changing the prior
distribution has not affected the rate of leakage, only the initial entropy, and
our linear model is still valid.

There is an alternative definition of entropy that gives a worst-case, rather
than an average-case summary: the min entropy. This measure depends on the
greatest probability in the distribution alone:

H∞ = − log2 max
x
P(x) (2.11)
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Note the relation to Equation 2.6: the min entropy is simply the (negated)
logarithm of the one-guess vulnerability for an optimal attacker. We compare
leakage measures derived from these two definitions shortly.

Given that we have replaced the expected set size by the entropy, we must
ask whether the pessimistic correction that allowed us to bound one-guess
entropy still holds, and if not, with what we should replace it. As already
noted, Smith [2009] demonstrated that for some distributions, Shannon en-
tropy is a very poor guide to one-guess vulnerability—the two may diverge
dramatically. This observation has lead to a strong move away from Shannon
entropy in the literature, toward min entropy, as a safer measure.

Knowing that they diverge in some cases only establishes that entropy does
not give us a universally applicable bound. However, if we can bound this
divergence, we can show that Shannon entropy can be used as a safe security
measure. What we need to know is: How bad can the vulnerability be, if we
know the entropy? We derive this divergence exactly, as the subject of the next
section.

2.5 Reevaluating Shannon Entropy

Figure 2.12 shows that the simple model of Figure 2.7 still holds. There we
saw that the size of the uncertainty set fell geometrically i.e. the logarithm fell
linearly. We now see that the generalisation of the (log) uncertainty set size to
a non-uniform distribution, the Shannon entropy, also shows a linear decrease
(down to the point at which we reach a vulnerability of 0.5, at least). We thus
continue to use a linear leakage model. Just as in Lemma 2 however, we need
to take into account that we have only a summary measure of the distribution.
There we knew the expected uncertainty set size, while here we know only
the entropy of the distribution—there may be many distributions with a given
entropy, with different vulnerabilities. We thus need to establish the greatest
possible vulnerability given Shannon entropy.

The Divergence of Vulnerability and Shannon Entropy

Our key result is the following lemma, which tells us how to maximise vul-
nerability while holding entropy constant. From this, we show that the vul-
nerability increases (approximately) linearly, as entropy decreases.
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Lemma 4 (Maximising V0 Given H1): Let

Q = {P : H1(P) = H}

be the set of distributions over the set X with Shannon entropy H. Let N = |X|.
Fix n ∈ N and for each P ∈ Q, partition X (disjointly) as Y ∪ Z such that

∀y ∈ Y, z ∈ Z. y > z∧ |Y| = n

For all distributions P ∈ Q, P(Y) (the combined probability of all y ∈ Y) is
bounded above by the curve

h(p) + p log2 n+ (1 − p) log2(N− n) (2.12)

where

h(p) = −p log2(p) − (1 − p) log2(1 − p) and 0 log2 0 = 0

Moreover, this bound is tight. For H > log2|Y|, it is reached by a distribu-
tion of the form

P(x) =

P(Y)/‖Y‖ x ∈ Y

(1 − P(Y))/‖Z‖ x ∈ Z

If H < log2 ‖Y‖, a solution exists with P(Y) = 1.

Proof. See Appendix A

Corollary 1: The greatest one-guess vulnerability, V0, of any distribution
with given H1 entropy H is a solution of:

H = h(V0) + (1 − V0) log2(N− 1) (2.13)

Proof. By substituting n = 1 and p = V0 into Equation 2.12.

Figure 2.13 plots Equation 2.13 for N = 8. Note that between 0 and 1:

H′(V0) = log
1
V0

− 1

N− 1

and

H′′(V0) =
−1

V0 − V
2
0
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Figure 2.13: Graph of Equation 2.13, showing maximum at V0 = 1/8,H1 = 3.
N = 8.

We see that the second derivative is negative everywhere in (0, 1) (the func-
tion is convex), and the first is zero only at 1/N, the maximum. Thus, H is
maximised by the uniform distribution (P(x) = 1/N), giving an entropy of
log2N. For a given entropy, there are generally two solutions, but as we are
solving for the greatest vulnerability, we need only consider the portion of the
curve to the right of the maximum. On the interval [1/V0, 1], H(V0) is strictly
monotonic, as the derivative is negative everywhere in (1/V0, 1). As H is also
continuous, it is therefore invertible on this interval.

Figure 2.14 is the diagonal reflection of Figure 2.13 i.e. its inverse. This
graph gives the function KN—the worst-case one-guess vulnerability for
a given H1 entropy, given N possible secrets. As the inverse of an anti-
monotonic, convex function, KN is also anti-monotonic and convex. Thus, by
Jensen’s inequality, given an expected entropy H, E(KN(H)) is maximised by
the distribution that assigns all probability to H. Therefore, given an expected
entropy, we need only look at the curve of KN to find the maximum expected
vulnerability. We therefore do not need to correct for using the expectation
rather than the true value.

AsN increases, the term h(V0) in Equation 2.13 is dominated by log2(N−1),
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Figure 2.14: Pessimistic correction function, K8, derived from Figure 2.13.
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Figure 2.15: Worst-case expected one-guess vulnerability given H1 entropy,
for a distribution over 66 secrets, showing nearly linear behaviour.
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Figure 2.16: Expected vulnerability and entropy for m = 6,n = 6, showing
both a naïve vulnerability estimate, and its safe correction.

and KN converges on a straight line between the points {0, 1} and {log2N, 1/N}.
Figure 2.15 shows K66 , and its linear approximation.

Updating the Leakage Model

We use this linear approximation to take the expected Shannon entropy, H1

from Figure 2.12, and calculate a bound on true vulnerability, plotted in Fig-
ure 2.16. Entropy is in red, and vulnerability in green. We see that our upper
bound is indeed safe, and only moderately pessimistic. We substantially over-
estimate the vulnerability initially, but converge on the true value. Included
for reference is a naïve approximation of vulnerability: 2−H1 . This estimate is
correct if the distribution is uniform; it is a lower bound in general.

2.6 Noisy Channels & Information Theory

We have so far assumed that the attacker is able to measure response time
precisely: that it is able to sample the side channel with unlimited fidelity. In
practice, an attacker is unlikely to have access to perfect measurements and
in any case, while the number of loop iterations may be the principal factor
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affecting runtime, there will typically be many more, making the attacker’s job
more difficult. This is particularly true for a remote exploit, where the attacker
runs on a separate machine, and must make its measurements over a shared
network, perhaps even the Internet as in the remote side-channel exploit
against OpenSSL reported by Brumley and Boneh [2003], or lucky thirteen
attack of AlFardan and Paterson [2013] that we investigate in Section 3.6. In
this case, it is likely that the variation in runtime that the attacker is attempting
to measure will be small compared with the confounding effects, principally
noise.

Despite this, it is often possible to exploit such a channel remotely (as we
will demonstrate), exploiting standard signal-processing techniques to extract
even a minuscule signal from overwhelming noise. The optimal attacker in
this case is Bayesian, as in the example attack of Section 2.4. We first recap
several standard results in information theory, before we describe how they
are applied in the context of a side-channel attack.

Information theory arose from the study of communication over noisy
channels [Shannon, 1948], between a sender and a receiver, with obvious par-
allels here. In our case, the receiver is the attacker, while the sender is either
a trojan horse (for a covert channel), or an unwitting trusted program (for a
side channel). Information flow is defined as the increase in the receiver’s
knowledge over time, through observing the sender’s effect on the channel.
In practice, we usually work with an equivalent formulation: by measuring
the decrease in the receiver’s uncertainty.

Given a noisy channel, the receiver will never be completely certain what
message was actually sent: the best it can do is to assign probabilities to the
various possibilities. The state of maximal uncertainty is one in which the
receiver assigns to each message the general probability of it being sent,
averaged over a long interval. That is, the receiver can only guess based on
how the sender usually behaves, but has no idea what the sender actually did.
Anything that allows the receiver to refine its assessment of probabilities,
reducing its uncertainty, represents a transfer of information from sender
to receiver. In the case that any message is equally likely (for example, an
encryption key being leaked directly over a side channel), the distribution of
maximal uncertainty will be uniform.

To fully state the receiver’s uncertainty, or state of knowledge, it is suf-
ficient to present its current belief distribution: this is the only complete ac-
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Figure 2.17: strcmp execution time distribution, via RPC over the Linux
networking stack, showing probability density (ρ).

counting. However, to define information flow, and compute the capacity
of a channel, working with full distributions is hopelessly unwieldy. We
instead choose a summary statistic for the distribution that is consistent with
our definition of information. The rate of information flow is the rate at which
this parameter (the uncertainty) reduces, as the channel is used.

The standard summary measure is the Shannon entropy, H1, as defined in
Equation 2.10. The rate of decrease of H1 in the attacker’s belief distribution is
the rate at which it is receiving information, in bits per second (assuming base
2 logarithms). If we can bound the rate at which information leaks, we can
place a lower bound on the expected entropy remaining after a given number
of guesses. Then, by applying our correction function, Kn, we can bound the
expected vulnerability. Measuring the change in min entropy, H∞, gives an
alternative definition of information flow, and we compare the two shortly.

What is the limit on the rate of information flow via the side channel?
Consider Figure 2.17, which gives the distribution of response times for strcmp
applied in a realistic scenario: Here, we implement our example password
checker, comparing the supplied string to a known secret. To complicate
matters for the attacker, it is only able to call the password checker remotely:
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Figure 2.18: Channel matrix for strcmp leakage. C = 2.34× 10−3b.

via a network socket. All response times thus include two trips through the
operating system’s network stack (Linux in this example).

The round-trip time dominates the execution time of strcmp: the median
response time is slightly less than 24.5µs, while the underlying execution time
is on the order of 10ns. Curves are shown for a common prefix length of 0, 1,
and 2. The general pattern continues for larger values. The probability mass
outside the range shown is negligible.

Given the difference between the execution time of strcmp and the round-
trip time, it is unsurprising that the overall response time is not proportional to
the prefix length. We do see, however, a multimodal distribution with peaks
roughly 250ns apart, corresponding to some unknown quantisation effect
in the packet processing path. Our small runtime variation is sufficient to
cause a small change in the relative weights of the second and fourth modes:
comparisons with a low common prefix length are slightly more likely to
appear in the left-hand peak, and those with a high prefix length, in the right.
Is this subtle variation enough to exploit the side channel? And if so, how
well?

To quantify this leakage, we first take the curves from Figure 2.17, to-
gether with those for prefix lengths up to 8, and place them side-by-side to
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Figure 2.19: Intrinsic leakage showing both vulnerability and entropy, con-
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create Figure 2.18. In this figure, common prefix length increases across the
horizontal axis, and response time along the vertical. The shading gives the
probability density (the height of the original curve). A vertical slice through
the figure at cpl = 2 is thus just curve 2 in the original figure. This is a channel
matrix, which is simply a matrix of conditional probabilities: the value at point
{a,b} is the conditional probability of seeing response time b, if the prefix
length is a. We are thus modelling the leakage as a channel, taking the prefix
length as input, and giving a response time as output. We can place an upper
bound on the rate of leakage, by calculating the capacity of this channel—the
greatest average rate of information flow possible.

This channel can transmit up to 2.34× 10−3b every time it is used. We use
channel matrices extensively in Chapter 3.

We use this channel matrix to simulate a large number of attacks against
the system, by the optimal attacker introduced in the previous section. The
attacker’s strategy is essentially identical to that described in Section 2.4,
except that the attacker now only has a distribution on prefix lengths, informed
by its observation of the channel output. The branch probabilities are thus
updated to the weighted sum of their values for each possible prefix length.
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The result of running 1000 attacks per secret, with the Markov prior of
Section 2.4 is shown in Figure 2.19, showing the trajectory with the side
channel enabled and disabled. We see that vulnerability rises faster, and the
remaining entropy drops faster, once the side-channel output is incorporated
by the attacker. Recall our criterion: we judge the security of the system
(with respect to side-channel leakage) by the difference between the intrinsic
vulnerability (the no-leakage curve) and the total vulnerability. The remainder
is the extrinsic, or side-channel leakage, which is the difference between the
curves.

We see immediately that while the difference in ultimate vulnerability
is small, the effect of the side channel is clearly discernible. The important
question here is whether we can apply the techniques developed in the pre-
vious sections to predict this leakage, given only a reduced description of the
system: we’d rather not have to run the extensive (and expensive) simulations
required to produce this figure for every system we design. The answer is
yes, and relies on combining the measurement of channel capacity with our
newly-established vulnerability corrections.

Capacity is defined using two new quantities: conditional entropy, and
mutual information. The entropy of the random variable S, given observation
o, or H1(S|o), is the entropy that remains in the distribution on S, once o is
observed. For example, imagine that s, a 10 bit secret chosen uniformly at
random, is a particular value of the random variable S, and o is a single bit
of s. Knowing o, we can eliminate half of the possible values of s, but those
that remain will still be uniformly distributed among themselves. The initial
entropy, H1(S) of 10 bits, has thus dropped to 9 on observing o.

The conditional entropy H1(S|O) is the expected value of H1(S|o) over all
possible values o:

H1(S|O) =
∑
o

P(o)H1(S|o)

In our example, both o = 1 and o = 0 are equally likely, and both give
H1(S|o) = 9. Thus H1(S|O) = 9: 1 bit of the information in S is revealed
by observing O, on average. Viewed as a channel, we say that the output
O carries 1 bit of information from the input S. This expected increase in
information about S on observing O is the mutual information:

I(S;O) = H1(S) −H1(S|O)
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Figure 2.20: Increase in leakage due to the strcmp side channel, including
forced exponential model. Also shown is the maximum possible leakage given
channel capacity.

Note that this flow is parameterised by the distribution P(S) (given P(S), P(O)
is determined as P(o) =

∑
s P(o|s)P(s)). The capacity of the channel is the

greatest mutual information between input and output for any distribution on
S (and hence on O):

C = sup
P(S)

I(S;O)

This is the greatest (average) rate at which information can flow over the
channel, and there exist coding schemes that approach this capacity arbitrarily
closely [Shannon, 1948].

By calculating the capacity of the channel matrix, we bound the rate of
information flow from above, and thus the expected entropy from below.
Recall that we are concerned with the difference in vulnerability between
the system with no leakage (its intrinsic vulnerability), and its vulnerability
with the side channel included. We are thus concerned with the additional
reduction in entropy, above that due to intrinsic leakage.
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Figure 2.21: Entropy differential for simulated channel matrices of varying
capacity, bounded by the intrinsic entropy and showing asymptotic behaviour.

2.7 A Safe Leakage Model for strcmp

The final refinement of our approach is to show that by using the channel
capacity, we can derive a model for the combined leakage (intrinsic and side-
channel), that provides a reasonable approximation of the observed behaviour
across a number of leakage rates. Further, by applying the pessimistic correc-
tion of Section 2.5, we derive a safe bound on vulnerability that is significantly
tighter than that given by min leakage, beyond about 100 guesses.

Figure 2.20 plots the difference between the two entropy curves in Fig-
ure 2.19 in dark blue. This is the information flow due solely to the side
channel—the extrinsic leakage. The red line is the greatest possible leakage
due to the side channel given k observations, or kC where C (the channel
capacity) is 2.34× 10−3b (see Figure 2.18).

We see that the observed leakage is close to the theoretical maximum for
a relatively brief period of less than 100 guesses, and then tapers off rather
than continuing to increase. We can better understand this behaviour if we
look at the differential entropy curves for channels of different capacities, in
Figure 2.21.
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This figure shows the measured differential entropy for 6 algorithmically-
generated channel matrices with capacities ranging from C = 1b down to
C = 0.01b. These curves bear a clear resemblance to each other, and to that of
Figure 2.20, initially rising in line with the channel capacity before reaching a
peak and decaying in a roughly exponential fashion to 0. Note that none of
the curves ever exceeds the intrinsic leakage. This is as expected, as doing so
would force the final entropy to be negative. As C increases, the differential
entropy converges (pointwise) on the intrinsic leakage curve.

This linear rise and exponential decay resembles, roughly, the curve xe−x—
a term that arises as the solution of a linear first-order differential equation.
Following this observation, we hypothesise the following model:

D′(k) =
Hintrinsic(k) −D(k)

Hintrinsic(k)
C+

D(k)

Hintrinsic(k)
H′intrinsic(k)

D(0) = 0

Here we calculate the rate of side-channel leakage (D), as a linear combination
of the channel capacity and the rate of intrinsic leakage, with a total weight of
1 at every point.

The intuition is that if linearly-increasing side-channel leakage is combined
with uncorrelated intrinsic leakage, then as we learn more and more, a greater
fraction of what we learn via the side channel simply duplicates something we
already know via the intrinsic channel. The above equation assumes complete
independence: if we have 2, of a total of 8 bits via the side channel, and 4 via
the intrinsic channel, we should expect an overlap of 4× 2

8 = 2× 4
8 = 1b of

duplicate information. We would thus have a total of 5 bits of knowledge,
rather than 6, as would be the case if the information were disjoint. Under this
model, as the differential entropy approaches the intrinsic entropy, its rate of
growth should slow, until it eventually reverses (and the differential entropy
starts to drop), as the intrinsic leakage accounts for more and more of the
information that was previously unique to the side channel. The differential
leakage will eventually converge to zero, as the intrinsic and total leakage
both converge on the initial entropy.

Mathematically, the differential equation is forced by H′initial. This “forced
exponential” model is plotted in Figure 2.22, for a subset of the channel
matrices used in Figure 2.21.

We see that the shape of the curves is correct, as is their asymptotic be-
haviour. That they never cross the intrinsic entropy (which would imply
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Figure 2.22: Differential leakage contrasted with forced exponential model.

a negative total entropy) is a good sanity check. We also have a good fit
for C = 1 (the true curve is shown dashed), which gets progressively more
pessimistic as C decreases. There is clearly another effect at work which is
suppressing the leakage at low capacities by more than we anticipate. We
could continue to refine the model, but it is already sufficient to make our
point: Shannon entropy is a natural summary measure for the leakage in this
system, and leads to a straightforward model of its behaviour. Figure 2.23
shows the behaviour of our approximation for small numbers of guesses.
In each case, we overestimate the initial rate of leakage—see the difference
between the two blue curves in Figure 2.21.

We are now, at last, in a position to model the leakage of the full system:
using a non-uniform prior, and with leakage via the empirically established
channel matrix of Figure 2.18. We do so by first estimating the side-channel
(extrinsic) leakage using Figure 2.20, and then calculating a safe bound on
expected vulnerability using Equation 2.13.

The results of our estimation are presented in Figure 2.24. Here, the solid
blue curve is the true vulnerability, and the red curve the true entropy. The
orange curve is the entropy estimated using our forced exponential model.
The green curve is the vulnerability bound calculated using the true entropy,
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Figure 2.23: Detail of Figure 2.22, showing behaviour near k = 0.
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Figure 2.24: Vulnerability and expected entropy form = 6,m = 6, including
side-channel leakage. Shows vulnerability estimated from true entropy, en-
tropy estimated using uncorrelated model and derived vulnerability estimate.
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Figure 2.25: Detail of Figure 2.24, showing low guess numbers. Includes the
min-leakage bound for comparison.

and the grey curve gives the vulnerability calculated from the estimated en-
tropy. This final estimate depends only on the capacity of the side channel:
the differential entropy (and hence total entropy) is calculated from the in-
trinsic leakage and channel capacity, with vulnerability estimated using our
established vulnerability correction. As we see from the graph, the bound is
safe, and only moderately pessimistic.

Finally, Figure 2.25 is a detail of Figure 2.24, in the region around k = 0.
This graph includes a vulnerability bound using min entropy, H∞, and its
associated leakage measure, the min capacity: ML. The initial min entropy is
logarithmic in the initial vulnerability of ≈ 1.68× 10−2, giving H∞(0) ≈ 5.90b.
The min capacity bounds the rate at which the min entropy drops, in a manner
analogous to the Shannon capacity of the channel. It is calculated from the
channel matrix as:

ML = log2

∑
o

max
s
P(o|s)

From Figure 2.18 we calculate a min capacity of ≈ 6.26× 10−2b. The orange
curve in Figure 2.25 shows the effect of a linear reduction in min entropy:

H∞(k) = 5.90b − k× 6.26× 10−2b
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The exponential shape of the curve arises once we convert from min entropy
back to vulnerability:

V0(k) = 2−H∞(k)

As we see, while the min capacity model is safe, it is also wildly pessimistic.
Our corrected Shannon entropy derived bound, by contrast, tracks the true
vulnerability much more closely. However, note that for fewer than approx-
imately 50 guesses, min leakage gives a tighter bound, as in this area the
pessimism introduced by the Shannon entropy correction is relatively large.
Therefore, while we will generally use Shannon capacity as our measure of
choice, for attacks involving small number of guesses we instead quote min
capacity (for example, in the remote attack presented in Section 3.6).

2.8 Related Work

Side and covert channels have traditionally been treated as noisy communica-
tion channels, as studied in the field of telecommunications [Shannon, 1948].
Naturally, the relevant techniques (channel matrices, mutual information and
channel capacity) were applied to these new channels. For example, the US
Trusted Computer System Evaluation Criteria (orange book) standards [DoD]
specify a maximum covert channel bandwidth (0.1 or 1 bit per second, de-
pending on level), for certified systems. Academic and industrial systems
generally applied the same methods, for example the analysis of fuzzy time,
by Trostle [1993], or in the work on countermeasures of Gray [1993, 1994].

More recently, there has been a growing realisation in the field, first clearly
articulated by Smith [2009], that the uncertainty measure in standard infor-
mation theory, Shannon entropy, gives only weak security guarantees. Smith
proposed that min entropy was more appropriate, as it directly addresses
vulnerability to guessing. This approach has since been broadly adopted,
for example by Braun et al. [2009]. Further measures are still occasionally
proposed, for example the work of Clarkson et al. [2005] on the possibility of
incorrect beliefs on the part of the attacker. We follow the consensus in using
min entropy as a safe measure, retaining Shannon entropy for its attractive
modelling properties. Köpf and Basin [2007], in analysing cryptographic
primitives, likewise settle on average case measures for reasons of practicality.

Formal work on min entropy and other measures continues to progress.
Köpf and Smith [2010] present simple mathematical bounds on min leakage,
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the analogue of channel capacity, some of which we recreate from our formal
model in Chapter 6. Andrés et al. [2010] demonstrate that channel matrices
can be efficiently derived for small formal system models.

A guessing attack, while broadly applicable, is not the only, or the most
general threat model. This model implicitly assumes that the security state is
fundamentally binary: compromised or secure; the attacker achieves complete
compromise by guessing the secret, and the system remains secure for as
long as it guesses incorrectly. Gain functions, and the associated g-leakage
measure[Alvim et al., 2012] give a more general model. Here, the attacker’s
“reward function” is not binary: the attacker may get some benefit from a
partially-correct guess. This generalises min-entropy: it reduces to it for a gain
function that assigns 1 to the correct secret and 0 to everything else. Alvim
et. al. also show that min-capacity gives an upper bound on both g-leakage and
Shannon leakage although, as we have demonstrated, min-leakage is generally
highly pessimistic. Our present work should, in principle, be extendible to
g-leakage, although we have not as yet investigated this possibility.

The work of Espinoza and Smith [2012] further demonstrates that channels
characterised by min leakage can be composed in the same fashion as classical
channels. Most recently, Morgan et al. [2014] have shown that a novel ordering
on processes, employing gain functions to represent the value of a secret to the
attacker, subsumes other orders (including min leakage).

Our work is aimed at establishing workable approaches to analysing
information leakage that arises in real systems. We thus take an experimental,
bottom-up approach. We broadly follow the existing consensus, recognising
that a worst-case measure such as min leakage is necessary to give a truly
worst-case bound. We nevertheless see that Shannon capacity is desirable,
in that it matches the empirically observed behaviour of systems, and can
be used to give safe bounds if appropriate corrections are made. Where
appropriate however, such as for the remote guessing attack we present in
Chapter 3, we measure min leakage rather than Shannon capacity.

2.9 Summary

In this chapter, we have laid out our security model. We note that side channels
and covert channels are simply two manifestations of the same underlying
problem, and that by attacking the mechanisms, we can eliminate both. We
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establish the guessing attack as our principle threat model, limiting our scope
to systems where it is possible for the attacker to compromise the system
through brute force, although the addition of side-channel leakage makes its
job easier. We measure vulnerability using the chance of compromise over a
fixed interval, rather than the expected time to compromise, as it has a clearer
interpretation when we are concerned with a nontrivial chance of compromise
in a comparatively short period. This contrasts with the usual approach
in cryptography which is concerned with the abilities of a well-resourced
attacker operating over comparatively long timescales.

We note that we are concerned with practical, and often imperfect, im-
plementations. We want to quantify the extent to which the implementation
diverges from the specification; hoping, of course, to keep this small. We lay
the groundwork for evaluating countermeasures that aim to eliminate this
extra, implementation-dependent leakage, without compromising the correct
operation of the system. To this end, we divide the information leakage from
a system into intrinsic leakage—that portion that is demanded by the spec-
ification, as a consequence of correct operation, and extrinsic or side-channel
leakage, that is solely due to implementation (or hardware) details. The sum
of these components is the total leakage. We judge a system by its differential vul-
nerability—the difference between its vulnerability considering total leakage,
and its vulnerability due to intrinsic leakage alone.

As a motivating example, we detail the timing channel that arises in a sim-
ple password checker, as a result of the non-constant runtime of strcmp. This
example, while simple, displays sufficiently challenging features to require the
full weight of our techniques to analyse: it has strong intrinsic leakage—the
yes-or-no response; the optimal attack is dynamic—the attacker must update
its guessing order as it observes the responses; and the leakage depends on
both the secret, and the attacker-supplied input. We are able to model the
differential leakage quite simply, needing to know only the capacity of the
side channel, and the intrinsic leakage curve. We have also established that
a model such as this, of expected Shannon entropy can be used to place a safe
bound on one-guess vulnerability. We proved the accuracy of our vulnerability
correction, and established that seeking to bound channel (Shannon) capacity
is still a productive approach to eliminating leakage, with the benefit that it
lets us build on standard information theory. We nonetheless recognise that
for a true worst-case accounting, the min entropy and min capacity approach
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is necessary—our insight is that in practical cases it is often unnecessarily
pessimistic.



3 Practical Countermeasures

This chapter presents joint work. The original implementation of cache
colouring in seL4 is due to Johannes Schlatow, under the supervision of

Gernot Heiser. The implementation of instruction-based scheduling in seL4 is
joint work between Qian Ge, under the supervision of Kevin Elphinstone,

and myself. This work is the subject of the following paper:

David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last mile; an
empirical study of timing channels on sel4. In Proceedings of the 21st ACM

Conference on Computer and Communications Security, pages 1–12, Scottsdale,
USA, November 2014. ACM. doi:10.1145/2660267.2660294. (to appear)

In this chapter, we take the lessons of Chapter 2 and apply them to real
systems. We analyse a pair of local channels: the cache contention channel and
the bus contention channel, and a remote channel: the lucky thirteen attack
of AlFardan and Paterson [2013]. For each channel we make an exhaustive
empirical analysis on five different platforms, and for each we calculate the
appropriate leakage measure, as established in Chapter 2: Shannon capacity
for the local channels and min leakage for the remote.

We evaluate the effectiveness of three mitigation strategies. For the cache
channel we analyse cache colouring (CC), which mitigates the channel by par-
titioning the cache between domains, and instruction-based scheduling (IBS),
which attempts to prevent exploitation of the channel by removing clocks.
We also examine the effectiveness of IBS against the bus contention channel,
where colouring is inapplicable. For the remote channel, we propose a novel
countermeasure, scheduled delivery (SD), which uses OS mechanisms to effec-
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tively mitigate the channel with better performance and lower overhead than
the existing state-of-the-art solution.

The empirical results suggest that while mitigation for local channels
is broadly possible, it is often undermined by subtle (and undocumented)
architectural quirks, which are becoming steadily more difficult to manage
in recent processors. The capacity calculations in this chapter, both with and
without mitigation, also provide the data to instantiate the leakage models of
the previous chapter.

In general, we attempt to have as little performance impact as possible, and
thus we avoid solutions that require expensive operations, where possible. For
example, the cache channel could be mitigated by flushing all cache levels (and
all other transient processor state) on every context switch. While effective,
the performance cost would be prohibitive.

We consider an optimisation, which is only applicable to systems using
a lattice-based classification scheme, in Chapter 5: lattice scheduling. This
approach provides complete isolation (as the cache is always flushed between
high- and low-classification domains), but still requires regular cache flushes,
in addition to only being applicable to a restricted class of systems. In this
chapter we focus on more general-purpose mechanisms, and leave lattice
scheduling as an example in which we are able to prove security, rather than
having to measure it. Lattice scheduling is a case in which we can formally
verify the complete security result, while the results of this chapter provide
the parameters for the analytic formulae just presented.

3.1 Experimental Setup

As stated, this chapter presents the results of an extensive empirical eval-
uation. We instrumented the five platforms shown in Table 3.1, including
chips released between 2005 and 2012, with two instruction set architectures
(ARM and x86), from four different manufacturers. The processors used also
represent a dramatic spread of architectural complexity, from the statically-
scheduled in-order ARM1136, to the fully out-of-order, speculative, multicore
Conroe.

For each combination of platform, channel and countermeasure (for the
local channels), we added a job to the existing seL4 regression-test setup
that would take a few hours’ observations early each morning, while the test
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Processor iMX.31 E6550 DM3730 AM3358 Exynos4412

Manufacturer Freescale Intel TI TI Samsung
Architecture ARMv6 x86-64 ARMv7 ARMv7 ARMv7
Core type ARM1136JF-S Conroe Cortex A8 Cortex A8 Cortex A9
Released 2005 2007 2010 2011 2012
Cores 1 2 1 1 4
Clock rate 532 MHz 2.33 GHz 1 GHz 720 MHz 1.4 GHz
Timeslice 1 ms 2 ms 1 ms 1 ms 1 ms
RAM 128 MiB 1024 MiB 512 MiB 256 MiB 1024 MiB
L1 D-cache

size 16 KiB 32 KiB 32 KiB 32 KiB 32 KiB
index virtual physical virtual virtual virtual
tag physical physical physical physical physical
line size 32 B 64 B 64 B 64 B 32 B
lines 512 512 512 512 1024
associativity 4 8 4 4 4
sets 128 64 128 128 256

L2 cache
size 128 KiB 4096 KiB 256 KiB 256 KiB 1024 KiB
line size 32 B 64 B 64 B 64 B 32 B
lines 4096 65,536 4096 4096 32,768
associativity 8 16 8 8 16
sets 512 4096 512 512 2048
colours 4 64 8 8 16

Table 3.1: Experimental platforms.

platforms were generally unused. In this way we accumulated around 1000
hours of observations over a six month period, and 4.7GiB of compressed
sample data.

The Channel Matrix

From the data for a particular combination we construct a plot, such as that in
Figure 3.1, that summarises the effect of the sender’s actions on the receiver’s
observations. In this instance, the plot shows the number of cache lines
touched by the receiver in a fixed interval (on the vertical axis), if the sender
manages to evict a given fraction of the cache (on the horizontal). The shading
at a point indicates the conditional probability of that observation given that
input (on a log scale). For instance, if the sender evicts 512 lines, the receiver
will most likely touch around 8000. This figure is the channel matrix introduced
in Section 2.6, from which we calculate channel capacity, in this case 4.25b.
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Figure 3.1: iMX.31 cache channel, no countermeasure. C = 4.25b. 7000
samples per column.

From the figure it is clear that evictions by the sender reduce the receiver’s
rate of progress.

To calculate the capacity, we use an improved form of the Blahut-Arimoto
algorithm (ABA) [Arimoto, 1972; Blahut, 1972], due to Yu [2010]. Briefly, this
is an iterative optimisation algorithm that converges on the capacity, and the
input distribution that achieves it. Recall from Section 2.6, that the capacity is
defined as the maximum mutual information between the input and output
distributions, over all possible input distributions. The algorithm starts with
any valid distribution (we take a uniform one) and, at each step, produces
a new input distribution with a greater mutual information, together with
an upper bound on the capacity. The lower bound (the observed mutual
information) and the upper bound converge monotonically (to the limit of the
arithmetic precision), and thus calculating the capacity to any desired preci-
sion (upper bound minus lower bound) simply requires taking a sufficient
number of steps.

Due to the large number of input and output symbols (columns and rows),
the channel matrices themselves become very large—that for Figure 3.10
would occupy 61GiB if stored densely. We take advantage of the sparseness
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of the matrices: for any given input there are a relatively small number of
outputs that we observe with non-zero probability. Even so, the largest of our
matrices still occupies 379MiB, even using single-precision floating point to
store its entries.1 We have developed our own set of optimised sparse-matrix
implementations of this standard algorithm, which are publicly available.2

The capacity calculations tend to be numerically unstable: with a large
symbol alphabet, some symbols are assigned vanishingly small probabilities,
which underflow to zero, but which make a disproportionate contribution to
entropy (recall that the entropy is the sum of terms −p log2 p, and note that
the logarithm grows as p shrinks). Compounding this is the loss of precision
inherent in floating-point logarithms, occasionally preventing the algorithm
converging to the needed precision. In most cases the arithmetic precision we
achieve is orders of magnitude smaller than the statistical precision, and is
thus ignored. In the few results where there is at least one significant figure of
arithmetic imprecision, we mark it with the following notation: xyz , meaning
that the notional value x is bracketed by the upper and lower numerical
bounds y and x.

Residual Channels

While the existence of a channel in Figure 3.1 is obvious, for Figure 3.2 the an-
swer is not straightforward. The figure is visually uniform, with no apparent
correlation between lines evicted and lines touched. However, we nonetheless
calculate a small but non-zero capacity of 2.14× 10−2b. Is this a real, residual
channel, or is it just statistical noise?

Note that even if there really is no channel (and thus the columns of
Figure 3.2 are actually drawn from the same distribution), the fact that we
have only a finite number of samples will lead to apparent differences in the
columns, particularly in areas of low probability, where a single extra sample
leads to a proportionately larger error. The effect is to make two columns
appear distinguishable when in fact they are not, and thus to increase the
apparent capacity.

1In all cases, we have fewer than 105 samples per column, and thus single-
precision values (with 23-bit mantissa) give sufficient precision to store the con-
ditional probabilities. Arithmetic is carried out in double precision (or longer), to
avoid precision loss.

2http://ssrg.nicta.com.au/software/TS/channel_tools/, or in the attached
material.

http://ssrg.nicta.com.au/software/TS/channel_tools/
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Figure 3.4: Distribution of capacities for 64 simulated zero-capacity matrices
derived from Figure 3.2.

To quantify the effect, we ran a number of simulations to produce Fig-
ure 3.3 (which draws on the matrix in Figure 3.17, for colouring on the
Exynos4412, itself very similar to Figure 3.2). Here we modified the real
channel matrix by introducing a small discontinuity, in order to simulate the
effect of a small residual channel, with a capacity on the order of 10−2b. From
this artificial matrix, we generated a large number of simulated observations
by taking the same number of samples used to generate the original matrix (in
this case 7200). For each of these we calculate its apparent capacity, plotted in
blue against the real underlying capacity in red. We see that the effect of taking
only 7200 samples is to increase the apparent capacity by around 4× 10−2b,
and that this effect is consistent across the range investigated. Importantly, we
see that the effect is always to increase the apparent bandwidth, and thus the
observed capacity is always an upper bound on the true capacity.

From this result we develop a statistical test for residual channels: We first
establish what we would expect to see if there were no residual channels. In
this case, as already discussed, all columns of the matrix would actually have
been drawn from the same distribution, and thus by averaging the columns
we have a histogram of this distribution constructed from the number of sam-
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ples per column multiplied by the number of columns. We then sample 1000
new matrices from this distribution, using the original number of samples. We
now have a corpus of observations consistent with the no-residual-channel
hypothesis. For each of these we calculate the capacity, and label the largest
CImax

0 , or the largest value in the 99.9% confidence interval for the null hypoth-
esis. If the observed capacity is greater than CImax

0 , our test suggests that there
is at most a 1 in 1000 chance of it being produced given no residual channels,
which is strong evidence that such a channel exists, even if it is not apparent
in the figure. Note that if the capacity is less than CImax

0 , this does not imply
that there is no channel—in this case the test is simply inconclusive.

Figure 3.4 show the distribution of observed capacities for simulated
zero-capacity matrices generated from Figure 3.2, binned at 3.2× 10−5b. Of
64 simulated matrices, only two display an apparent capacity of at least
1.059 × 10−2b and thus, if the original matrix has greater capacity than this
(it does), we infer that there is only a 3% chance that this is a statistical fluke.
The larger number of samples used in the real test allows us to improve this
to 0.1%.

Returning to Figure 3.2, we see that the observed capacity of 2.14× 10−2b
is greater than CImax

0 (1.13× 10−2b), and thus we infer that a residual channel
exists. This channel is due to TLB contention, as we demonstrate in Section 3.3.

3.2 The Local Channels

Before considering mitigation strategies, we first establish the behaviour of
the unmitigated local channels: cache contention and bus contention.

The Cache Contention Channel

Modern processors invariably employ caches to compensate for the fact that
memory access times are now orders of magnitude greater than cycle times.
At any point in time, some subset of memory is held close to the CPU in fast
but expensive (and thus small) caches. These caches are usually divided into
fixed-sized blocks called lines (often of 16–64B) which store blocks of the same
size loaded from memory.

Any two processes that execute concurrently (either truly, on a multipro-
cessor, or time-sliced on a uniprocessor) compete for space in the processor’s
caches. There are only a finite number of cache lines and thus loading data
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Figure 3.5: The cache-contention channel.

from one process generally implies evicting that of another. One process can
deliberately evict the lines of another process, by touching appropriate parts
of its memory. Figure 3.5 illustrates the effect, where process 3 has executed
for some time, filling a fraction of the cache with its own data. Once a context
switch (to process 2) occurs, process 3’s data is no longer accessible (greyed
out in the figure), although it remains resident. Process 2 then begins to fill
the cache with its own data, eventually attempting to fill the same line as 3
did. At this point process 3’s line will be evicted.

The time taken to execute a memory load or store varies dramatically
depending on whether the data is cached and, if so, in which cache (L1, L2,
. . . ) it lies. For example, on the Intel Core architecture (as implemented in the
E6550) [Intel 64 & IA-32 AORM, §2.2.5, table 2-16], a load that hits in the L1
data cache has a latency of 2 cycles, one that misses in L1 but hits in L2 has a
latency of 14 or 15 cycles, while an access to the L3 cache takes approximately
110 cycles (the manufacturer does not make precise guarantees). An access that
misses in all caches and thus goes to main memory can easily take thousands
of cycles to complete. This difference is easily measurable, especially if a large
number of accesses are executed together and the total time is observed. One
process (the sender) can thus cause an effect (by evicting cache lines) that
is measurable by another (the receiver), even if all explicit communication
channels are removed.

This is a hardware-mediated timing channel.
The receiver, of course, needs a clock with which to measure the effect of

these cache misses. We assume that if the system designer is concerned with
covert channels, then obvious clock sources (any sort of clock() system call,
for example) have been eliminated. Therefore, to construct a sample exploit,
we take advantage a of more subtle timer, that is almost universally available,
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1 /∗ TX ∗ /
2 char A[ LINES ] [ 6 4 ] ; i n t S ;
3 while ( 1 )
4 for ( i =0 ; i <S ; i ++) A[ i ] [ 0 ] ^= 1 ;
5
6 /∗ RX ∗ /
7 char B [ LINES ] [ 6 4 ] ; v o l a t i l e i n t C;
8 void probe ( void ) {
9 while ( 1 ) {

10 for ( i =0 ; i <LINES ; i ++) B [ i ] [ 0 ] ^= 1 ;
11 C++;
12 }
13 }
14
15 void measure ( void ) {
16 i n t R , C1 , C2 ;
17 while ( 1 ) {
18 C1= C;
19 do { C2=C; } while ( C1==C2 ) ;
20 R=C2−C1 ;
21 }
22 }

Figure 3.6: Code to exploit a cache channel.

and often of very high accuracy: the preemption tick.

Imagine that we are executing the code of Figure 3.6 on a single-processor
system, with the code under TX (lines 3–4) in the sender, and both functions
under RX (probe() lines 8–13, and measure() lines 15–22) in the receiver, each
in a separate thread. The sender varies its working-set size under the control
of the input variable S (for send)—modifying a varying number of elements
of the array A. Each modification ensures that one cache line is both resident
and dirty (this example assumes 64B lines). The receiver walks endlessly over
its array, B, dirtying every line, and recording its progress in the variable C.
The two arrays are sized to entirely cover the addressable range of the cache.
The receiver is entirely memory-bound, and number of lines that it manages
to touch in a given interval depends on how often it hits in the cache, and thus
on how aggressively the sender is evicting its cache lines.

To measure the receiver’s progress we employ a second thread, executing
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Figure 3.7: AM3358 cache channel, no countermeasure. C = 4.69b. 6000
samples per column.

the function measure(). This thread watches the value of the counter, C. For
as long as it executes (and hence prevents either the sender or the receiver
from executing, as all are executing on the same processor core), the value
remains constant. A jump in the counter’s value indicates that it has been
preempted, and the receiver thread (and thus also the sender, if the scheduler
is round-robin) has executed. The size of the jump gives the number of cache
lines that the receiver managed to touch during a single timeslice. Preemption
(and thus timeslice length) is typically driven by a regular timer interrupt
(often at 1000Hz on a modern system, giving a timeslice of 1ms). The receiver
is able to accurately measure its rate of progress, R (for receive), from which it
infers the value of the input variable, S.

Figure 3.1 gave the result of exploiting this channel (under seL4) on the
iMX.31 SoC, while Figure 3.7 and Figure 3.8 show the same channel on a
pair of closely-related chips: the AM3358 and the DM3730, both based on the
Cortex A8 core and with 256kiB L2 caches divided into 4096 64B lines. The
only difference between these is the somewhat higher values in Figure 3.8,
due to the DM3730’s higher clock rate (1GHz versus 720MHz). In all these
matrices, we have flushed the L1 cache on every context switch, to isolate
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Figure 3.8: DM3730 cache channel, no countermeasure. C = 5.28b. 8000
samples per column.

the effect of L2 contention. We will see that this flush is required for cache
colouring in any case, in Section 3.3.

The number of lines evicted by the sender, the input variable S—its work-
ing set size, varies along the horizontal axis, while the number touched by
the receiver, the output variable R, along the vertical. The colour at point
{s, r} gives the conditional probability of seeing r lines touched by the receiver,
given that s were evicted by the sender. Intuitively, the more the figure varies
from left to right, the more easily the receiver can distinguish two different
input values, and the higher the channel capacity.

The calculated capacity of 4.69b for Figure 3.7, and of 5.28b for Figure 3.8
translate into usable bandwidths of 1.56 and 1.76kB/s respectively, when
multiplied by 333Hz (the rate at which the ensemble of three threads complete
one cycle of preemptions). A higher bandwidth can obviously be achieved
by using a higher sample rate: On a uniprocessor, the useful sampling rate is
limited by the preemption rate (1000Hz) but on a multiprocessor (or in the case
of simultaneous multithreading), the sampling rate is essentially unlimited
as the sender and receiver need only execute a single memory access each
in order to communicate. In this case the channel might be exploited at a
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Figure 3.9: Exynos4412 cache channel, no countermeasure. C = 7.04b. 1000
samples per column.

very high bandwidth (megabytes per second, at least), but the capacity, or the
number of bits transferred per sample will not increase. In fact, the capacity is
likely to decrease somewhat, as the effect of noise will become greater as the
range of variation that the sender exploits becomes smaller. We thus note that
the quantity of importance is the capacity (in bits), and that the bandwidth (in
bits per second) depends on the maximum sampling rate, which is generally
out of our control. However, reducing the capacity will reduce the bandwidth.
From now on therefore, we quote only the channel capacity.

The next plot, Figure 3.9, is for the Samsung Exynos4412, a 4 core ARM
Cortex A9. This chip has a significantly larger L2 cache than any of the
other ARM SoCs tested, at 1024kiB. It also returns to the 32B cache lines of
the ARM11, giving 32,768 lines. As we see, this leads to the substantially
increased bandwidth of 7.04b, as the sender now has finer-grained control
over its degree of interference. A further increase in clock speed (to 1.4GHz),
coupled with cache lines that are half as long, is again sufficient to explain the
increase in the peak rate from 22×103 to 45×103 lines touched per preemption.

Our final unmitigated channel matrix, Figure 3.10, is for the Intel Core
2 Duo E6550. This is much larger and more powerful than any of the ARM
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Figure 3.10: E6550 cache channel, no countermeasure. C = 8.82b. 1000
samples per column.

cores we have considered, and has a commensurately larger L2 cache, at
4MiB. Cache lines are 64B. The peak work rate is significantly higher, at
≈ 250×103, which the increase in clock speed alone (from 1.4GHz to 2.33GHz)
is insufficient to explain. This core clearly has a significantly higher load/store
capability, and a greater L2 bandwidth to match. The result is a capacity of
8.82b.

Figure 3.11 summarises the unmitigated channel results: The capacity of
the L2 cache-contention channel scales roughly with the logarithm of the num-
ber of L2 cache lines. The confounding factors in this plot are the varying clock
speeds (which, in fact, increase monotonically with cache size for the cores we
consider), and that the x86 kernel has a minimum preemption interval of 2ms,
versus the 1ms of the ARM kernel, which would tend to slightly overstate the
capacity for the E6550. The dotted line is a linear model, fitted to the E6550.

The Bus Contention Channel

The second local channel that we analyse is one that only appears in systems
with multiple processors: bus contention. In a multiprocessor system, the
processors will generally share not only some levels of the cache hierarchy
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(usually at least the last level), but they must also compete for bandwidth on
system buses, e.g. to the memory or to peripherals. Thus, even if two processes
execute on separate processors, share no memory or other explicitly allocated
resources, and do not compete for cache lines, they can still interfere with
each other by monopolising bus cycles, which are typically underprovisioned
relative to the combined peak requirements of all processors.

Figure 3.12 shows the effect of contention between two processors, again
executing the code of Figure 3.6, but this time with the sender and receiver
each executing on one of the two separate cores of the E6550. On this chip,
the two cores have separate L1 caches, but share a unified L2. The point at
which the two processors begin competing for access to the L2 cache (and
memory) is clear in the figure, occurring as soon as the sender spills outside
its L1 cache. Here the interference is not due to competition for space, as the
both sender and receiver are restricted to only 2048 (out of 65, 536) cache lines,
and thus see essentially no capacity or conflict misses. The effect is rather due
to the fact that the two cores combined are able to issue more load and store
requests (per second) than the L2 cache is capable of performing, and thus
an increase in the number issued by the sender reduces the number available
for the receiver. The capacity of this channel is between 5.80 and 5.81b (our
numerical precision in this example was limited to three significant figures).

This channel is obviously only measurable on the two multiprocessor
platforms (the E6550 and the Exynos4412), of which only the E6550 had a
working multiprocessor port of seL4 when our experiment began.

3.3 Cache Colouring

The first countermeasure that we consider, cache colouring, eliminates the cache
contention channel by exploiting a widespread feature of modern caches, set-
associativity, to partition the cache between multiple domains.

Figure 3.13 illustrates the technique. Imagine a machine with a 256B
physical address space addressed by an 8b word. In this machine, the memory
is divided into 16 frames, each of 16B. This is a simplified example, but the
principles are identical for systems with much larger address spaces.

As already described, the cache is divided into lines, here of 4 bytes each,
which are always a size-aligned block of adjacent bytes. The line is the smallest
addressable unit in the cache—loads and stores are always of a multiple of
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Figure 3.13: Cache colouring.

the line size. Our system has 16 cache lines, for a total of 64 bytes of cache.
The bytes within a line are indexed by the lowest bits of the address words, in
our case bits 1 and 0.

For each load or store, the cache is searched to see if it holds the requested
address, and signals a miss if not. There are several approaches, the simplest
being direct mapping: the line number is taken directly from the next lowest
bits after the line offset. In our example, 16 lines require 4 address bits, and
we thus use bits 5–2. While simple to implement, a direct-mapped cache has a
substantial disadvantage: all addresses that are equal modulo the cache size
alias, and loading any will evict any other that is resident. Direct-mapped
caches suffer from a high rate of conflict misses.

The opposite extreme is the fully associative cache. Here, the address is
compared in parallel against every line, and a given line may thus be stored
anywhere, irrespective of its address. A fully associative cache never suffers
conflict misses, as any set of lines (of up to the cache size) may be co-resident.
The disadvantages of the fully associative cache are that it is expensive to
implement, power hungry and the parallel match becomes slower as the cache
becomes larger. This is important, as the match is in the critical path.

The usual compromise between these is the set-associative cache. Here
cache lines are divided into a number of associative sets. The set number is
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calculated by direct mapping, while the lookup within each set is associative.
This takes advantage of the speed of direct mapping, while still allowing
some degree of co-residency for aliased addresses. The size of the sets, or
associativity, is the number of cache ways. For example, the iMX.31 has a 4-way
associative L1 data cache of 512 lines, and thus has 128 direct-mapped sets.
In contrast, the L2 cache of the E6550 is 16-way associative, with 65,536 lines,
giving 4096 sets. Higher associativity is usually seen in outer-level caches,
where latency is less critical.

Returning to our example, our 2-way associative, 16-line cache has 8 sets.
These are indexed by the next 3 bits after the line offset: 4–2. The 2-way
associativity has reduced the number of direct-mapped bits from 4 to 3 (2n

way associativity eliminates n direct-mapped bits). Any contiguous set of
23+2 = 32 addresses will map one 4-byte line into every cache set. The
important point is that this range, the direct-mapped range, is larger than the
page size of 16 bytes. Therefore, any adjacent pair of pages will map onto
disjoint ranges of cache lines, as shown in Figure 3.13. We thus divide the
physical address space into pools of coloured pages, such that no two pages from
different pools can collide in the cache. If processes are assigned to distinct
pools (using the virtual-memory system to map these non-adjacent frames into
a contiguous range of virtual pages), then the cache channel between them is
removed.

We can only colour memory when the size of the direct-mapped range
is at least two pages, and the number of colours available (the size of the
range divided by the smallest page size) varies greatly between platforms.
For the L2 cache, there are 4 colours available on the iMX.31, and 8, 8, 16 and
64 for the AM3358, DM3730, Exynos4412 and E6550, respectively. We cannot
colour the L1 cache, as on every platform it either has only a single colour, or
is virtually-indexed. We instead flush it on every context switch. The cost of
this is relatively small, given its small size.

Turning to our results, Figure 3.2 showed the result of applying two-way
cache colouring on the iMX.31, and Figure 3.14 and Figure 3.15 give the equiv-
alent result for the two Cortex A8 cores, the AM3358 and DM3730. In contrast
with the unmitigated channels in Figure 3.1, Figure 3.14 and Figure 3.15 re-
spectively, all visible variation has been eliminated. The capacities drop by a
factor of 200, 400 and 1000 respectively, to on the order of a hundredth of a
bit. Note that all three results fail the statistical test introduced in Figure 3.1,
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implying that there is a real residual channel here. We will return to this point
shortly, and show that this residual channel is due to TLB contention.

Figure 3.16 shows the effect of not flushing the L1 cache on the DM3730.
The number of samples is insufficient to reliably estimate capacity, but the
existence of a channel is obvious.

Figure 3.17 shows the results on the Exynos4412, reducing the capacity of
Figure 3.9 by a factor of less than 100, from 7.04b to 8.13 × 10−2b. Together
with the apparent capacity lying above the threshold of 4.37× 10−2b, it is clear
that the residual channel is now seriously undermining the countermeasure.

The cause of this remaining channel is clear from the top blue curve of
Figure 3.18, which plots the expected value of each column of Figure 3.17.
The variation of about 5 parts in 10, 000 is obvious, and is consistent with the
corresponding blue curve in the lower plot, showing the number of CPU stall
cycles due to TLB misses per line touched by the receiver. A larger number of
TLB misses leads to a smaller number of lines touched.

The TLB, or translation lookaside buffer, is a small per-processor cache of
virtual-to-physical address translations, which must be consulted on every
memory access, to determine the correct physical address to issue to the
external memory subsystem. This cache is shared between processes and is
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Figure 3.17: Exynos4412 cache channel, partitioned. C = 8.138.14
8.12 × 10−2b.

CImax
0 = 4.37× 10−2b. 7200 samples per column.

a source of contention. Flushing the TLB when switching between domains
eliminates the remaining contention, at the cost of a greater rate of TLB-
induced stalls, as shown by the red curves. This channel also appears on
all other ARM platforms tested, explaining all the residual capacities noted
above.

The residual TLB channel only became apparent after a large amount of
data was collected, and we thus do not yet have sufficient data to verify the
absence of a channel (after flushing) to the level of precision represented by
Figure 3.17. Figure 3.18 however, suggests that if any variation remains, it has
been reduced by at least an order of magnitude.

Finally, Figure 3.19 shows the effect of colouring the L2 cache of the E6550.
In contrast to the ARM examples, here there is a distinct artefact at half the
cache size, which is more clearly visible in the red curve which plots the
column averages, as in Figure 3.18. Here we see a clear effect at half the
cache size, and another at the L1 size. The latter occurs as the x86 architecture
provides no mechanism to selectively flush the L1 cache, and so in this run it
was left alone on preemption, allowing the two threads to contend. Together
with the half-cache artefact, this leaves us with a bandwidth of 4.54× 10−1b:
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Figure 3.18: Exynos4412 TLB contention.

only a 20-fold reduction over the raw bandwidth of 8.82b.

The L1 interference can be reduced by manually overwriting the contents
of the cache on a context switch, by having the kernel walk an array of a small
multiple of the L1 size. This is has non-trivial performance implications, and
is only somewhat effective, as the bottom-most, blue, curve in Figure 3.19
shows. It is unclear whether this residual channel can be closed on x86 without
substantial performance cost, although colouring would be effective between
cores that share a colourable last-level cache, but with separate L1s.

The remaining artefact (at half the cache size) appears to be due to L2 cache
misses generated by the sender. To confirm this, the blue curve was generated
by reducing the sender’s coloured pool to cover only a quarter of the cache,
rather than a half in all other examples. We see that the artefact moves neatly
to a quarter of the cache size—the point at which the sender starts to cause a
large number of capacity misses by evicting its own previously loaded lines.

This contention cannot directly affect the receiver, as the two are parti-
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Figure 3.20: DM3730 cache channel, partitioned, with the receiver’s working
set restricted to 1024 lines. 2000 samples per column.

tioned, but certain cache misses in the kernel may still be observable. Both
kernel code and data are coloured, and hence partitioned, but there is a brief
interval between switching between coloured kernel images and resetting the
preemption timer, where a cache miss (particularly an instruction cache miss)
can affect the length of the receiver’s timeslice. Specifically, the kernel resets
the preemption timer, and hence starts counting time against the next thread’s
timeslice before switching kernel images. The sender can cause cache misses
in this interval (as we are still executing in its colour), that will be counted
against the receiver’s timeslice. As the receiver uses its timeslice length to
measure its progress, this will show up as an exploitable channel. This channel
should be resolved by a more careful re-implementation of kernel colouring,
which is underway at the time of writing.

Performance Cost

Partitioning the cache is not without a cost. The effective cache size available
to any process is divided by the number of colours. If two processes were
previously sharing the cache evenly, then this may have minimal impact on
performance, and could even show an improvement by better isolating them
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Figure 3.21: DM3730 cache channel, unmitigated, with the receiver’s working
set restricted to 1024 lines. 2000 samples per column.

[Tam et al., 2007]. In the case of a single process with a large working set
however, we are likely to see a loss of throughput.

The receiver in our exploit represents the worst case: a process whose
working set exactly matches the L2 size. Prior to partitioning, after a single
walk through the array warms the cache, every subsequent access will be
a hit. Halving the available cache by partitioning ensures that we will now
see a miss on every access, as the process will evict all of its old cache lines
before it gets a chance to reuse them. We see this in, for example, Figure 3.15,
where the results cluster around 4600 iterations per timeslice, which mirrors
the worst-case seen in Figure 3.8, where the receiver’s miss rate was driven
to 100% by the sender. The worst-case penalty is thus a 5-fold reduction in
performance—consistent with simply having a smaller cache.

For a process whose working set fits within a partition, the situation is
much better, as shown by Figure 3.20. Here, we have run the same receiver
thread, but with its working set restricted to 1024 lines—comfortably within
its partition of 2048. Here we see no loss of throughput compared to the
equivalent unpartitioned results in Figure 3.21, until the sender evicts 3/4 of
the cache and begins to interfere with the receiver, causing the sudden drop at
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3072 lines.

Thus in performance terms, a partitioned cache behaves as a larger number
of smaller, separate caches.

3.4 Noise versus Determinism

We observed that to exploit a timing channel the receiver needs a clock. For
clocks (such as the preemption tick) that cannot be easily removed, there are
two basic ways to prevent their use in exploiting a channel: reducing their
precision by adding noise, or reducing the variation relative to observations in
the channel. Reducing variation can be viewed as adding anticorrelated noise,
while the former approach uses uncorrelated noise.

Consider Figure 3.22. This plots the amount of noise required to reduce
the capacity of a 12b channel to any desired level, assuming that it is either
uniformly distributed and uncorrelated with the channel output, or perfectly
anticorrelated with it. To reduce the capacity to half its original value takes
roughly the same quantity of noise in either case. Once we start trying to
reduce the capacity toward zero, however, the uncorrelated noise required
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increases rapidly. In fact, this curve has a vertical asymptote at zero—no quan-
tity of noise will completely close the channel, some signal always remains.
In contrast, given 12 bits of anticorrelated noise, the signal is gone and the
channel closed. Therefore, to reach small channel capacities, adding anticorre-
lated noise—reducing the signal, is more effective. This insight underlies the
second countermeasure we analyse.

3.5 Instruction-Based Scheduling

As already noted, it is not sufficient for the sender to influence the receiver’s
performance—the receiver must be able to detect it. This is the essence of the
two-clock model for a timing channel [Wray, 1991]. This abstracts from the true
passage of time, requiring only the existence of two ‘clocks’, visible to the
receiver, which can be manipulated by the sender.

A clock, in this context, need only be a sequence of ticks, by observing
which the receiver detects that some amount of time has passed. Given only
one clock, the receiver has no idea how much time has elapsed since the last
tick, and if the ticks are not at a constant interval, this alone gives the receiver
no information.

Once the receiver has a second clock, it can use its ticks to measure the
intervals between those of the first—the receiver extracts information from
the difference in the rate of the two clocks. If one clock does run at a constant
rate (although the receiver, of course, does not know this), then the receiver
measures the true rate of the other. If the sender is able to manipulate one of
the two clocks, without affecting the other, the rate measured by the receiver
will change. All that matters is that the sender can affect the relative rates of
the two clocks, and that they are both visible to the receiver.

In general, the sender only needs to be able to affect the relative arrival
order of two streams of events (the ticks), which are visible to the receiver.
Conversely, if we can arrange that the relative arrival orders of all events
visible to the receiver are predictable (the clocks run at the same rate), the
channel disappears. This is the motivation for instruction-based scheduling,
which attempts to prevent a process from using its own execution as a clock.

Returning to the cache channel, any process that shares a cache with the
receiver is a potential sender. The sender is able to manipulate the receiver’s
rate of progress by varying its cache usage. Thus, the receiver’s program counter
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C source ARM instructions x86 instructions
1 mov %eax,%edx

2 shl $0x6,%edx

3 ldr r0, [r1,r3,lsl #5] mov 0x8059b80(%edx),%ecx

B[i][0]^= 1; 4 mvn r0, r0 not %ecx

5 str r0, [r1,r3,lsl #5] mov %ecx,0x8059b80(%edx)

6 ldr r0, [r2] mov 0x804f1c0,%edx

C++; 7 add r0, r0, #1 add $0x1,%edx

8 str r0, [r2] mov %edx,0x804f1c0

9 add r3, r3, #1 add $0x1,%eax

10 cmp r3, ip cmp $0x10000,%eax

11 movgt r3, #0 cmovge %ebx,%eax

while(1) 12 b 3 jmp 1

Figure 3.23: Disassembled machine code corresponding to lines 9–12 of the
cache channel exploit in Figure 3.6.

forms a clock that the sender can manipulate. Note that the program counter
is always implicitly available, even if the register itself is hidden—the receiver
need only run in a tight loop and count the number of iterations to measure
its progress. The receiver now needs only one more clock, that isn’t tied to its
program counter, to exploit the channel. In Figure 3.6 we used the preemption
tick, assuming that all more straightforward clocks would be removed. We
thus attempt to tie the preemption tick to the receiver’s rate of progress, and
thus make the channel unusable, without needing to remove the underlying
source of interference.

Note that, in order to to be effective, all clocks need to be either removed, or
made deterministic with respect to each other. This is likely to be very difficult
to achieve in a realistic system, especially if I/O is required. Instruction-based
scheduling has been implemented, specifically to address timing channels
(e.g. by Stefan et al. [2013]), although its applicability to complete systems
is not yet established. What we establish here empirically, is the limitations
imposed on the technique by modern hardware.

Triggering preemptions based on the progress of a process is straightfor-
ward. We take advantage of the performance counters that are available on any
modern CPU, and allow us to generate an interrupt once a fixed number of
instructions have been retired. Replacing the timer interrupt in the seL4/ARM
kernel with an interrupt generated by the PMU (Performance Management
Unit) required the modification of only 18 lines of code. The implementation
on seL4/x86 was not much harder.
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Figure 3.24: iMX.31 cache channel, instruction-based scheduling. C = 2.12×
10−4b. CImax

0 = 5.41× 10−5b. 10,000 samples per column.

Figure 3.23 shows the machine code corresponding to the main receiver
loop (lines 9–12 in function probe()) of Figure 3.6, for both ARM (the ARMv6
and ARMv7 versions are identical at this point) and x86. Note that the nested
loops have been merged by the compiler. The loop on ARM is 10 instructions
long, while on x86 it takes 12. The two correspond almost one-to-one, with the
two extra x86 instructions doing the work of the ARM barrel shifter, which can
be accessed by any arithmetic instruction. On ARM, the base of array B is held
in r1, and the address of the counter C in r2. On x86, these are at addresses
0x8059b80 and 0x804f1c0, respectively. Setting the preemption interval to
100000 instructions on ARM, and 120000 on x86, we expect to see 10000 loop
iterations (and hence 10000 lines touched) per preemption.

Figure 3.24 shows the results for the iMX.31, with the baseline of 10000
subtracted. The countermeasure behaves essentially perfectly here, with the
overwhelming majority of samples showing exactly 10000 iterations. While
the probability is so low that it is invisible, even on a log scale, we do very
rarely see 9999. This is due to the small number of instructions executed by
the kernel between resetting the preemption counter and returning to the
user-level thread. This means that slightly fewer than the desired 100000



82 CHAPTER 3. CASE STUDY: PRACTICAL COUNTERMEASURES

-1

0

1

0 1024 2048 3072 4096

Li
ne

s
to

uc
he

d
−

10
00

0

Lines evicted

10−4

10−3

10−2

10−1

1

Figure 3.25: AM3358 cache channel, instruction-based scheduling. C = 1.86×
10−3b. CImax

0 = 9.56× 10−4b. 10,000 samples per column.

instructions are executed at user level, and thus the preemption point will
slowly vary, resulting in the occasional short count of iterations. As this effect
is not influenced by the sender, it does not constitute an exploitable channel.
The true bandwidth is thus zero.

Figure 3.25 and Figure 3.26 show the results for the Cortex A8 cores: the
AM3358 and the DM3730. Here, while the majority of samples give the ex-
pected value, we see a nontrivial number at both +1 and −1, the frequency
of which is correlated with the sender’s eviction rate. This is a small, but ex-
ploitable channel of capacity 1.86×10−3b for the AM3358, and 1.49×10−3b for
the DM3730. The deviations of +1 are correlated with those of −1, and look-
ing at the raw sample data, we see why. Deviations from the nominal value
always appear as a sequence of the form: . . . , 10000, 10001, 9999, 10000, . . . .
That is, a single extra iteration in one preemption interval, and one fewer in
the next.

We would expect to see this behaviour if the preemption point were
slightly uncertain, but occurred just before the store that increments C at
line 8 of Figure 3.23. Then, a slight delay in preemption would see one extra
store in the prior interval, and one fewer in the following. We infer that the
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Figure 3.26: DM3730 cache channel, instruction-based scheduling. C = 1.49×
10−3b. CImax

0 = 7.74× 10−4b. 10,000 samples per column.

instruction count is accurate in the long run, by observing that the long-term
average of the iteration count is precisely 10000. It thus appears that, while the
count reported by the PMU is accurate, the delivery of the overflow interrupt
is delayed if one of the core’s two execution pipes is stalled on a cache miss.

In Figure 3.27, which gives the results for the Exynos4412, the residual
variation gets worse. Here we see a dramatic variation in the counter value at
preemption—far more than can be accounted for by a small variation in the
preemption point.

Apart from a small number of deviations of −1, which are consistent with
our understanding for the iMX.31 (the small number of kernel instructions
causing slightly short intervals), we see that the number of instructions ex-
ecuted is usually significantly greater than we expect, and that this error is
strongly affected by cache misses—this channel has a capacity of 1.22b. Under
heavy contention, or a close to 100% probability of a miss, the most likely
result is an overshoot of 4 iterations, or 40 instructions.

There is a clear discontinuity at around the L1 size, which we infer to be
the effect of a single L2 miss—with a working set much smaller that the L1
there is only a small probability of a miss (as the sender will only be dirtying



84 CHAPTER 3. CASE STUDY: PRACTICAL COUNTERMEASURES

Li
ne

s
to

uc
he

d
−

10
00

0

Lines evicted

0

2

4

6

8

10

12

14

16

0 8192 16384 24576 32768

L1 way

10−4

10−3

10−2

10−1

Figure 3.27: Exynos4412 cache channel, instruction-based scheduling. C =
1.19b. CImax

0 = 3.76× 10−3b. 1000 samples per column.

its own L1 cache lines), while with one much larger, a miss is almost certain.
The most likely value for a small working set (no miss) is 10012, against
10007 with a miss, with the relative likelihoods equal at the L1 size. This
suggests an L2 miss penalty of 5 iterations, or 50 cycles. That there is no
further variation within the range of the L1 cache is expected, as it is flushed
on every preemption.

The documentation for this core states that the particular counter that we
rely on gives only an approximation of the number of speculatively-executed
instructions, which is in turn an even coarser approximation of the number
actually retired [Cortex A9 TRM, §11.4.1, table 11-5]. What is most interesting
is that the error we see is exactly the opposite of that we would expect from
speculation—counting speculated instructions should overestimate the true
value, as some of these will be discarded. In contrast, this is an underestimate.

This fact suggests that what we are seeing is not (at least primarily) an
inaccuracy in the instruction count, but imprecision in the delivery of the
overflow interrupt, which is consistent with what we saw on the Cortex-A8.
On this hypothesis, we are seeing an interaction between the performance
counter and the relatively complex pipeline. The core appears to defer the
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ARM instructions
1 mcr 15, 0, r5, cr9, cr12, {5}

PMU load 2 mrc 15, 0, r2, cr9, cr13, {2}

3 mov r3, r5

4 add r3, r3, #1

5 and r0, r3, #255

Cache line store 6 str r0, [sl, r0, lsl #5]

7 cmp r3, r8

8 blt 4
9 mcr 15, 0, r5, cr9, cr12, {5}

PMU load 10 mrc 15, 0, r1, cr9, cr13, {2}

Figure 3.28: Code to test PMU accuracy in the presence of L2 cache misses.

exception until there is a pipeline stall, which naturally tends to happen earlier
when the cache miss rate is higher.

To test this hypothesis, we run the code in Figure 3.28 on the Exynos4412.
This measures the change in the instruction count after a known sequence
of instructions—10000 iterations of the loop between lines 4 and 8. The
coprocessor operations on lines 2 & 10 load the counter, and we dirty one cache
line per iteration on line 6. We should see 50002 instructions executed between
the two counter loads, or 50003 if one endpoint is included (assuming that the
counter increments consistently either before or after the load instruction).

In fact, we consistently see a count of 50006 instructions which tells us
two things: The first is that the branch misprediction that occurs on loop
termination does contribute to the instruction count, with the branch itself
and the first two loop instructions being speculated (the store to memory is
not speculated). The second, and more interesting, fact is that the count is not
affected by L2 misses, which implies that the effect we see in Figure 3.27 is the
delayed delivery of the overflow exception.

The result of instruction-based scheduling on the Cortex A9 is disappoint-
ing, giving only a 5.8-fold improvement: from 7.04 to 1.22b, and this same
core gave the weakest performance under colouring. As an experiment, Fig-
ure 3.29 shows the channel with both countermeasures enabled. Relative to
partitioning alone, relaxed determinism gives a further 3.5-fold improvement:
from 8.13×10−2 to 2.32×10−2b, our best result on this platform. Whether this
small additional improvement is worth the hassle of removing all remaining
clocks is not clear.

Figure 3.30 shows our results for the E6550 which, like the Exynos4412,
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Figure 3.29: Exynos4412 cache channel, instruction-based scheduling and
partitioning. C = 2.32 × 10−2b. CImax

0 = 2.78 × 10−2b. 500 samples per
column.
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Figure 3.31: E6550 bus channel, relaxed determinism. C = 2.90 × 10−1b.
CImax

0 = 7.90× 10−3b. 3000 samples per column.

is a speculative, out-of-order CPU. Again, we see a variation in the number
of iterations per interval, but here clustered more tightly around the correct
value, and not showing the consistent overshoot that we saw in Figure 3.27.
This suggests that the integration of exceptions with speculation and out-
of-order execution, on this core, is more precise. We still see a significant
left-to-right variation, correlated with the likelihood of a cache miss, giving
a capacity of 5.71 × 10−1b. The countermeasure is thus also comparatively
ineffective on this core. We still appear to see exceptions being delayed until
pipeline stalls.

Instruction-Based Scheduling and the Bus Contention Channel

The great attraction of instruction-based scheduling is that it prevents (in
principle), the exploitation of any timing channel, while an approach such as
cache partitioning, while effective, is limited to a particular channel (in this
case cache contention).

Figure 3.31 shows the result of applying IBS to the bus contention channel
of Figure 3.12. While the magnitude of the effect is decreased by a factor
of 200, 000, a clear artefact remains, and the capacity drops by only a factor
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of 15. This result is not surprising given that we already know that the
performance counter exception is affected by stall cycles, but it is nevertheless
disappointing. Nonetheless, this is the greatest reduction in bus-channel
bandwidth that we were able to achieve.

Performance Cost

In contrast to colouring, which limits the cache available to a process, deter-
minism has no intrinsic throughput cost. Where it is likely to hurt is in fairness
and latency.

Preemption is the means by which the CPU is shared between processes,
and changing the conditions for preemption naturally affects fairness. While
normally each thread has an equal share, we instead enforce an equal sharing
of work—each thread retires the same number of instructions per timeslice.
The wrinkle is that these instructions may take a very different amount of time
to execute. At one extreme, a completely CPU-bound task that never stalls
will complete in the minimum possible time. On the other hand a memory-
bound task that stalls on almost every instruction will take dramatically
longer. For example, a long sequence of pointer-chasing loads (where the
address of the next load is calculated from the result of the previous, and
thus cannot be speculated or prefetched) could well take 1000 times longer to
complete than its CPU-bound competitor. Memory-bound tasks thus receive
a proportionately higher share of CPU time than those that execute more
efficiently. Whether this is a problem depends on the application.

A further effect of the ballooning of timeslices is that latency, the maxi-
mum interval between allocated timeslices, will increase. This may well be a
problem for a latency-sensitive application.

3.6 Lucky thirteen as a Remote Channel

Our final countermeasure deals with a different threat model: the remote at-
tacker. This scenario presents us with a different set of tradeoffs than those
considered so far. On the upside, remotely-exploited side channels are gener-
ally of lower bandwidth, and the attacker has less ability to observe the system.
On the downside, we have no control over the attacker itself. In particular, it
must be assumed to have an accurate clock, and hence an approach such as
instruction-based scheduling is impossible.
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The practicality of remotely exploiting a timing-based side channel against
a real system was demonstrated by Brumley and Boneh [2003]. Their work
demonstrates a real attack against OpenSSL, which exploited variation in the
runtime of its implementation of RSA [Rivest et al., 1978] that depended both
on the secret key, and the attacker-supplied input. A notable feature of this
attack is that it could be carried out at a significant network distance from the
target, opening up the possibility of attacks on internet-facing systems.

We likewise demonstrate that the lucky thirteen attack on OpenSSL’s im-
plementation of datagram TLS (DTLS) reported by AlFardan and Paterson
[2013] is exploitable at essentially unlimited network distance. We then show
that OS-level techniques can be used to effectively mitigate it, without requir-
ing any modification of the vulnerable cryptographic implementation. This
approach is entirely black box.

The Attack

This attack exploits the fact that TLS first calculates the MAC (message au-
thentication code, or digest), and then encrypts it. This allows a malicious
man-in-the-middle to modify packets taken from the wire and submit them
to the server, which will then decrypt and begin to process them before their
authenticity is established. In this case, the attacker exploits the non-constant
execution time of the MAC calculation itself by manipulating the padding
bytes contained in the packet. We construct two packets: M0 and M1, that
take a different length of time to process, before the server rejects them (as
the MAC check on the manipulated packet will fail), where this time depends
on the (encrypted) contents. The attacker can thus distinguish two encrypted
packets by intercepting them and sending them to the server, on the client’s
behalf.

Figure 3.32 shows the distribution of response times for packetsM0 and
M1, as measured at the greatest network distance we could achieve: between
an Amazon EC2 datacenter in Oregon, USA and our lab in Sydney, Australia:
a distance of 12,000km. While there is a substantial overlap between the dis-
tributions, they are nevertheless easily distinguishable. An attacker observing
only a single round trip has a 62% chance of guessing which packet was sent.

Table 3.2 list the vulnerability for a number of different attack scenarios, all
conducted against OpenSSL running on the AM3358. While the vulnerability
clearly drops with increasing distance, it only does so rather slowly. We thus



90 CHAPTER 3. CASE STUDY: PRACTICAL COUNTERMEASURES

0

2

183 183.5 184 184.5 185 185.5 186

p/ms

Response time (ms)

M0
M1

Figure 3.32: Histogram of DTLS echo times for OpenSSL 1.0.1c, at intercon-
tinental distance—13 hops and 12, 000km, see row 4 of Table 3.2. Generated
from 105 samples per packet, and binned at 10µs. These peaks are distinguish-
able with 62.4% probability.

Version Hops D(km) Vmax ML(b) RTT±σ(ms) Note

1.0.1c (VL) 1 0 0.998 0.986 0.734± 0.007
3 0 0.597 0.109 1.193± 0.229 WLAN
4 4 0.766 0.566 1.281± 0.056
13 12,000 0.624 0.207 185.1± 31.47

1.0.1e (CT) 1 0 0.622 0.071 0.796± 0.005
1.0.1c (SD) 1 0 0.570 0.030 0.751± 0.005

Table 3.2: Vulnerability against network distance.

conclude that network distance offers little or no protection against even quite
small timing attacks (the underlying variation is less than 10µs).

Also included in this table is the vulnerability for the latest version of
OpenSSL (1.0.1e), which has replaced the vulnerable MAC calculation with
a constant-time implementation. We see that the vulnerability is reduced,
but not eliminated: an attacker can still guess with 62% probability. In the
following section we demonstrate that we can mitigate this channel more
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effectively, and with lower overhead, using OS-level techniques. We quote
min leakage here, as we are concerned with vulnerability to a small number
of guesses.

3.7 Scheduled Message Delivery

Our countermeasure relies on the observation that an attack via the network
must use channels that are under the control of the operating system. In seL4
in particular, both synchronous communication (e.g. remote procedure calls
or RPC) and asynchronous notification (e.g. interrupt delivery) are provided
by kernel-managed objects: endpoints. We take advantage of this to impose
a delay mechanism at the level of message delivery, to prevent the leakage
of information via packet arrival times, without modifying the vulnerable
component itself.

Our threat model consists of a public-facing component that manipulates
sensitive data. From its own perspective, the attacker has a direct channel
to this sensitive component. In practice, this channel traverses at least one
kernel-controlled endpoint, where we apply our countermeasure. This is
implemented as a lightweight mechanism, which implements the policy set by
a separate user-level component.

We pace synchronous message delivery using real-time scheduling. Specif-
ically, endpoints are modified to allow an authorised component to set a
minimum response time, which is enforced by the kernel using a simplified EDF
(earliest deadline first) scheduler.

Our prototype implementation is within seL4 itself, making high perfor-
mance easier, although with careful design it could be replicated at user level,
obviating the need for changes to the verified kernel.

The seL4 kernel already provides a mechanism for efficiently implement-
ing RPC, the reply capability (cap). A client thread invokes the Call method (an
seL4 system call) of an endpoint associated with the server. This transfers the
message payload synchronously, blocking the calling thread until the server
replies. The server blocks on the same endpoint for client requests. When
one arrives, the server receives both the message and a cap. This reply cap
functions as a one-shot endpoint: sending on it unblocks the client, delivering
the reply and deleting the cap. This lets multiple clients use the same service
endpoint, and the server direct its replies accordingly.
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We piggyback on this mechanism: the minimum response time of the
endpoint sets the earliest instant at which the reply may be sent. When a
call is made, the kernel records the instant of invocation, adds the delay, and
stores this release time in the newly-created reply cap. If the server invokes the
reply cap before the delay has elapsed, it blocks until it does. By default the
delay is set to zero, and the countermeasure is disabled.

Policy is provided by the user-level mitigator with the authority to set the
delay. This delay is set on the client side, allowing the mitigator to transpar-
ently update it without the vulnerable server being aware. An existing server
can thus be used unmodified. The delay parameter provides a hook to allow
the mitigator to implement a dynamic delay policy. Zhang et al. [2011] present
just such a policy, that adaptively adjusts the delay (with exponential backoff),
such that under attack, the system will converge on its worst-case execution
time, while leaking a provably-bounded number of bits.

There is some potential for a malicious client to reduce the system’s per-
formance by deliberately triggering the countermeasure. This is limited to
the worst-case response time which, as we will see in Figure 3.34 is only 10%
greater than the unmitigated response time, even for an unrealistically tough
example. The extra time, moreover, is not wasted, but can be reclaimed for
useful work (or used to enter a low-power idle state).

The authority to set the delay is controlled by the standard capability sys-
tem of seL4, which allows very flexible, fine-grained distribution of authority.
A feedback channel is also provided to allow the mitigator to detect overruns
and adapt its policy.

As mentioned, delays are enforced by a simplified EDF scheduler: we
maintain a heap of pending events, sorted by increasing release time, and
set the timer to expire at the first. We enforce no deadlines, which simplifies
implementation. This is thus more accurately described as an earliest-release-
first scheduler, and controls all time-triggered behaviour: preemptions are
scheduled alongside message delivery.

Scheduled Delivery against Lucky Thirteen

Figure 3.33 shows how we use scheduled delivery to protect OpenSSL. The
system is partitioned into three layers, shown left-to-right, implemented by
separate components. The network stack (left) is lwIP [Dunkels, 2001], the
TLS layer OpenSSL 1.0.1c, and the application an echo server. Data flow
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Figure 3.33: Scheduled delivery for OpenSSL. Solid lines are packet flow with
dotted control flow. Server blocks at C (call), until R (reply), after at least ∆t.

is shown by solid arrows and proceeds clockwise. Control flow is shown
by the numbered dotted arrows, and begins with the server thread being
notified of input (1). It then calls the handler to retrieve input (2), blocking (C)
and creating a reply capability (R) with a delayed release time. The handler
calls OpenSSL (3) to retrieve decrypted packets. The attacker’s packets are
processed by SSL_read, which may block, and returns once a valid packet is
found. The handler then restarts the server (4), which blocks until its delay
expires, and then forwards its output to SSL_write.

Figure 3.34 shows the response times for the two packets, as measured
from a directly-connected machine (no switch). In the terminology of Chap-
ter 2, the packetsM0 andM1 are the two (secret) inputs to the channel, and
the response time is its output. Each pair of peaks for M0 and M1 (labelled
VL, CT and SD respectively) in Figure 3.34 is essentially a channel matrix with
just two columns (M0 and M1), each built by taking 106 observations of the
output for each input.

The leftmost pair of peaks (VL) are the response times for the vulnerable
implementation of OpenSSL 1.0.1c, executing on the AM3358. Times are
measured, as in the original attack, by sending a modified packet immediately
followed by a valid packet (also captured from the wire), and taking the
response time of the second. This deals with the difficulty that DTLS does
not acknowledge invalid packets. The machine under attack is executing an
echo server, protected by DTLS. As line 1 of Table 3.2 shows, these peaks are
trivially distinguishable, allowing the attacker to correctly guess which packet
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Figure 3.34: DTLS distinguishing attack—histogram of response times for
packetM0 versusM1. Shows distinguishable peaks for vulnerable implemen-
tation in OpenSSL 1.0.1c (VL), constant time implementation in 1.0.1e (CT),
and results with scheduled delay (SD) demonstrating reduced latency. All
curves generated from 106 packets for bothM0 andM1, and binned at 1µs.

was sent with 99.8% probability in the worst case. This corresponds to a leak
of 0.986b of min entropy, out of 1 total.

The rightmost pair of peaks (CT) give the response time for the constant-
time implementation of OpenSSL 1.0.1e, which substantially eliminates the
vulnerability—the curves are almost identical. They are, however, not precisely
identical, as row 5 of Table 3.2 shows—the two can still be distinguished
with 62.2% probability, while to declare the system completely secure, the
attacker should only be able to guess correctly half the time. This result
emphasises the difficulty of producing portable cross-platform constant-time
code, and indicates that the production version of OpenSSL (as of writing) is
still somewhat vulnerable to this attack.

Under scheduled delivery, any variation in the execution time of OpenSSL’s
decryption routines is absorbed between steps 2 and 4. The results obtained
(after manually tuning the delay) are given by the central pair of peaks (la-
belled SD) of Figure 3.34. As Table 3.2 shows, we (row 6) achieve a lower
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vulnerability than the constant-time implementation (row 5) of OpenSSL
1.0.1e (57% distinguishability or 0.03b leak of min entropy versus 62% and
0.07b), with a 50µs (≈ 6%) better latency. The better matching between the
curves occurs as nothing in our implementation is data dependent, and the
only intrinsic latency penalty is the cost of blocking and restarting the server
thread, which we see from the figure is ≈ 10µs.
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Figure 3.35: Load performance and overhead of scheduled delivery against
unmodified OpenSSL 1.0.1c, and the constant-time implementation of 1.0.1e.

Figure 3.35 shows overhead at various loads. Each curve here plots CPU
load against ingress rate, up to the point at which packet loss begins (this
machine has a single core). For the unmodified implementation (1.0.1c, blue),
load increases linearly with packet rate, with packet loss beginning with the
onset of saturation at 3000 packets per second (p/s). The constant-time imple-
mentation of OpenSSL 1.0.1e (red) shows a 10.6% CPU overhead relative to
this baseline, consistent with the increased latency observed in Figure 3.34, and
shows a correspondingly earlier saturation, at 2800 p/s. This extra CPU time
is wasted performing redundant computations, to ensure that the execution
time for any packet is always the worst case.

The next curve (green), for a single-threaded server using scheduled deliv-
ery, tracks that for the original, vulnerable, implementation closely, showing
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only a 1.7% overhead. This shows the benefit of avoiding the redundant
computations inherent in a constant-time implementation. Instead of busy-
waiting (as in the improved SSL implementation), our implementation idles
by entering a (low-power) sleep state.

The same curve also demonstrates its weakness, with packet loss occurring
at only 1400 p/s, as any packets that arrive while the server is sleeping are
dropped, limiting achievable throughput. This benchmark is an extreme case,
as the echo server does no work at all—all CPU time is devoted to OpenSSL.
In a more realistic system, where the fraction of time devoted to vulnerable
cryptographic routines is small, the throughput loss will be similarly low.

The orange curve is included to demonstrate that the slack time can be
reclaimed. Here, we use two server threads to recover the sleep cycles (one
can respond while the other is delayed). This is not safe to do if the results are
visible to the attacker: running a second server thread (as we have done here)
merely transforms exploitable latency variation into exploitable throughput
variation. In a more realistic setting, however, this is not necessary as, as
discussed above, the amount of time wasted sleeping will in practice be
dwarfed by the time spent executing the application.

3.8 Related Work

The publication of the orange-book standards for high-assurance systems
[DoD] (now superseded by the common-criteria standards [NIST]) drove
academic and industrial interest in systems able to be certified to the highest
levels defined (e.g. A1), which required formal treatment of covert channels.

As already discussed, the VAX VMM project attempted to formally ad-
dress timing channels, introducing the fuzzy time technique [Hu, 1991, 1992b;
Trostle, 1993] to inject noise into all visible time sources. In contrast, we focus
rather on reducing signal levels by mitigating channels directly, having noted
the limitations of adding uncorrelated noise to a channel. Numerous other
channels were identified and analysed in connection with the project [Karger
and Wray, 1991; Wray, 1991], in particular bus contention (which we analyse)
and the disk-arm channel (which we do not).

Our empirical approach has some similarity to more recent work of Gay
et al. [2013], on measuring the bandwidth of interrupt-related covert channels.
In contrast to our approach of calculating the bandwidth directly from a
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sampled channel matrix, they hypothesise a binomial model for the leakage
mechanism they analyse, and fit it to the observed data. The validity of the
model does not appear to have been extensively validated. We have the
advantage of not needing to provide such a model, although it could provide
insight into the underlying mechanism.

Cache colouring was originally proposed to allow real-time systems to
partition the cache among tasks, in order to reduce contention-related jitter
[Liedtke et al., 1997], and is still applied in contemporary systems [Ward et al.,
2013]. Its potential as a mitigation technique was independently recognised by
Godfrey [2013], who tested it on the Xen hypervisor against a live side-channel
attack. Our results are complementary, showing by means of our synthetic
benchmark that the underlying channel is effectively mitigated. A further
point of contrast is that we partition kernel as well as user memory.

StealthMem [Kim et al., 2012] cleverly exploits a widespread cache-replacement
policy (k-LRU) to provide a limited quantity of memory that will never be
evicted by a competing process. While effective, this approach suffers (along
with colouring and instruction-based scheduling) from relying on undoc-
umented (and non-guaranteed) hardware behaviour. In contrast to cache
colouring, it requires sensitive components to be modified to exploit the
protected memory, whereas we mitigate components as black boxes.

In contrast with fuzzy time, other authors have made the same realisation
as us that increasing determinism is more effective than injecting noise, and
have repurposed deterministic execution frameworks, originally developed
to aid in debugging multithreaded systems [Bergan et al., 2010; Aviram et al.,
2010b,a; Ford, 2012], to mitigation. In contrast to this full determinism ap-
proach, requiring modification of vulnerable components, instruction-based
scheduling, as implemented by us and in the Hails web application framework
[Stefan et al., 2013], specifically targets timing channels and is thus simpler to
implement and importantly, black box.

The scheduled-delivery countermeasure is inspired by the work of Askarov
et al. [2010] and Zhang et al. [2011] who showed how to adaptively set delays
in order to provide on-line defense against remote timing attacks. We present
an efficient, light-weight mechanism capable of implementing such a policy.

While in this work we analyse and mitigate known channels on modern
hardware, incidentally discovering a few new ones, various authors have tack-
led the difficult problem of systematically (or even automatically) identifying
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channels. The shared-resource-matrix methodology of Kemmerer [1983, 2002]
provides a systematic approach to identifying potential channels through
known mechanisms, and has been influential in the literature. The problem
of channels through known (kernel) mechanisms does, however, appear to
be subsumed by more recent work on verified isolation [Murray et al., 2013].
Sidebuster [Zhang et al., 2010], in contrast, is a more application-specific, and
automatic, approach to identifying a narrower class of channels: remotely
exploitable timing channels in web applications. No matter how channels are
identified, we argue that they require extensive empirical evaluation, without
which any estimate of severity is, at best, an educated guess. In the case
of hardware-mediated channels, close analysis and a familiarity with the
hardware remain essential.

There are other countermeasure approaches that we have not covered,
for example the work of Gray [1993, 1994]. The focus of Gray’s work, and
of much of the existing work in the field is on introducing noise, which we
argue is an ineffective technique, when compared to increasing determinism,
or eliminating contention. Lattice scheduling, an approach to minimising the
number of cache flushes required to close the cache channel, due to Hu [1992a],
is covered in more detail in Chapter 5, where we provide a formally-verified
implementation.

3.9 Conclusions

The results presented in this chapter allow us to reach a number of conclusions
regarding the effectiveness of mitigation, both by instantiating the models of
Chapter 2 and observing the performance of the countermeasures on modern
hardware.

Firstly, and unsurprisingly, the effect of unmitigated channels is devastat-
ing. Every platform leaks at least 4 bits per observation via the cache channel
which, even if limited to a relatively low sample rate (333Hz in our exam-
ple) gives a bandwidth of kilobits per second. The bus contention channel is
similar. At these bandwidths, leaking a small but valuable secret, such as an
encryption key, would require at most a few seconds. Even the transmission of
bulk data is feasible, especially on a multiprocessor where the sampling rate is
effectively unlimited. Even for the remote channel (the lucky thirteen attack),
where the appropriate measure is no longer bandwidth but min leakage, we
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see total compromise after only one observation: this system leaks 0.99 bits
of min-entropy (out of a total of 1 bit possible) in a single attempt, despite
being a side and not a covert channel, and thus being accidentally, rather than
deliberately exploited. These figures are also well in excess of the 1b/s and
0.1b/s permitted by the thirty year old orange-book standards [DoD]. For
systems concerned with information leakage, effective countermeasures are
thus essential.

We find that colouring is generally effective against the cache channel, as
long as care is taken to deal with all residual channels. We do see a trend of
decreasing effectiveness on more complex hardware, with capacity reductions
of 200 to 1000 times for the simpler cores (the ARM1136 and Cortex A8),
compared to less than 100 for the more complex A9 (Exynos4412) and Conroe
(E6550) cores. In the case of the E6550, we are greatly restricted by the lack of
a mechanism to selectively flush the L1 cache, making it presently impossible
to achieve both high performance and high security on the x86 platform. Our
results do not yet include the effect of TLB flushing, but we nevertheless
conclude that cache colouring remains broadly effective, although harder to
effectively implement on recent hardware.

Instruction-based scheduling shows a similar pattern, but much more dra-
matically. It drops from begin extremely effective on simpler cores (apparently
perfect on the ARM1136, and thousand-fold reductions on the A8), to being
essentially useless on the A9 and Conroe cores. This is due to its reliance on
the accuracy of performance counters, which we have demonstrated to be
poor, and strongly affected by events under the sender’s control. The alterna-
tive, of deliberately stopping short and then single-stepping the processor to
the required point, abandons the advantages of simplicity and inherently low
performance impact that make the approach attractive. Combined with the
necessity of eliminating all timing sources available to the receiver leads us to
conclude that this countermeasure is not practical. Even for the bus channel,
its performance is poor enough not to be worth the effort.

It thus appears that while known countermeasures can be used to make a
substantial improvement in the capacity of local hardware-mediated channels,
success is highly reliant on very careful implementation and empirical analysis,
and depends on the effect of undocumented and evolving low-level hardware
details. For the time being, systems requiring a truly high level of local
covert-channel security will need to continue to use either fully isolated or
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specialised hardware. Cache colouring does, however, offer hope for reducing
the scope for side-channel attacks on sensitive cryptographic components,
given a robust and practical implementation.

The outlook for remote channels is much more positive. We see that
while we do not yet have perfect mitigation for channels such as the lucky
thirteen attack, black-box techniques allow us to outperform the state-of-the-
art solution (constant time reimplementation), with lower implementation
effort, better security and better performance. There is also nothing to suggest
that a more carefully audited and implemented mitigation could not achieve
perfect security, at low performance cost. The contrast with the situation for
local channels is stark, and highlights the extremely large security challenge
posed by shared hardware.

Finally, these experiments provide us with the data to instantiate the
mathematical models we derived in Chapter 2, to see whether the level of
mitigation that we can achieve is sufficient to provide meaningful protection
against the established threat models. We take our very best (non-perfect)
result, for instruction-based scheduling the DM3730, showing a residual
channel of no more than 1.49× 10−3b, and substitute the matrix of Figure 3.15
for that of Figure 2.18.

This channel shows a min leakage of 4.32× 10−3b. Using the pessimistic
min leakage models of Section 2.7, and re-using the example secret distribu-
tion, after 60 guesses we leak only 0.25b (out of 5.9b) of min entropy via the
side channel, but already have a roughly 25% chance of guessing correctly sim-
ply by knowing the prior distribution on secrets. So, in the case of a very weak
secret (6 characters selected nonuniformly from 6 possibilities), the effect of
side-channel leakage is dominated by intrinsic leakage. This implementation
is safe (its vulnerability is mostly intrinsic), but only barely.

The situation reverses dramatically for a stronger secret: A strong (uni-
formly random) 1024b secret could be completely transmitted in 700,000 sam-
ples (about 35 minutes) by a trojan horse (exploiting this as a covert channel),
and could be guessed with 50% probability in only 120,000 (about 6 minutes)
by an attacker exploiting a worst-case side channel. Additionally, even the
best-case result for the remote channel, a min-leakage of 0.03b, implies a 50%
chance compromise in only 15 guesses, although this can likely be improved
with a more thorough implementation.

These results are all naturally pessimistic: they are the worst-case outcome
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if the full possible bandwidth of the channel is exploited. Real attacks are
likely to be less effective, and systems somewhat more secure in practice.
Nevertheless, our results indicate that the state of the art in implementing
leakage-resistant systems on commodity hardware is a long way from al-
lowing us to give comfortable security guarantees given the pessimism of
established leakage modelling theory, even if we are able to meet the rather
arbitrary guidelines specified for high-assurance software.





4 pGCL for Systems

This chapter draws on work first presented in the following paper:

David Cock. Verifying probabilistic correctness in Isabelle with pGCL. In
Proceedings of the 7th Systems Software Verification, pages 1–10, Sydney,

Australia, November 2012. Electronic Proceedings in Theoretical Computer
Science. doi:10.4204/EPTCS.102.15

After establishing our threat model, the guessing attack, and our approach
to modelling leakage in Chapter 2, and evaluating the effectiveness of low-
level mitigation strategies in Chapter 3, we now consider how the problem
can be attacked from the other end—formally verifying the absence of (or
limits on) leakage using a high-level specification. To do so, we need to bring
probabilistic properties within the scope of an seL4-style proof.

The seL4 theorem [Klein et al., 2009] is a refinement from an abstract
specification, via an intermediate executable model [Derrin et al., 2006], to
a high-performance C implementation [Winwood et al., 2009]. The higher
levels are specified in a locally-developed monadic framework [Cock et al.,
2008], which allowed us to model the highly imperative style of the kernel
in the pure executable fragment of the Isabelle [Nipkow et al., 2002] theorem
prover’s mechanised higher-order logic (Isabelle/HOL).

Additional variables (such as time) can be added to a such monadic speci-
fication, by extending the state type appropriately and stating how the system
acts on it. What we cannot yet handle is the stochastic nature of these variables.
The execution time of a complex system is seldom deterministic, and even
when it is theoretically predictable, doing so is often so complex that we are
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forced to retreat to statistical models. Therefore, we extend our toolkit to
tackle statistical reasoning, without giving up existing capabilities.

To this end, we formalise the probabilistic guarded command language of
McIver and Morgan [2004] (pGCL), in Isabelle/HOL. Using this, we can pro-
duce machine-checked refinement proofs for probabilistic systems, building
on the extensive prior work on pGCL. Our formalisation integrates cleanly
with our existing work, all of which is in Isabelle. We show that we can reuse
existing results about seL4, by mapping our existing monadic Hoare logic into
pGCL.

We have not conducted a full-system proof of probabilistic non-functional
properties on the scale of L4.verified, but in this and the next two chapters,
we demonstrate that the required tools are largely in place.

4.1 The Case for Probabilistic Correctness

The verification of the seL4 microkernel demonstrated that we can verify the
functional correctness of real systems. Functional correctness, however, covers
only properties that are guaranteed to hold. This excludes classes of proper-
ties relevant in practice, for example execution time. By allowing security
properties that hold only with some probability, we can give a more nuanced
classification of systems than with a functional property such as noninterfer-
ence [Goguen and Meseguer, 1982]. In particular, we wish to classify systems
according to the Shannon capacity, or min capacity, of identified side channels.

Probabilistic Behaviour in Systems

In formal specification, it is convenient to treat a system as predictable, and
make absolute claims about its behaviour. Once implemented, while the
system may be predictable in principle, its size and complexity (and often
under-specification) makes this impractical.

The usual approach in this case is to retreat to a probabilistic model,
informed by benchmarking. That this is true is apparent on reading the evalu-
ation section of a systems paper: While the precise performance of a system
is theoretically predictable and could thus be calculated, what we see are
benchmarks and histograms. The tools of the evaluator are experiments and
statistics! This is a testament to the immense difficulty of precisely predicting
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performance. Once real world phenomena intrude, as in networking, exact
prediction becomes impossible, even in theory.

Moreover, some properties can only be treated statistically. If such prop-
erties are correctness-critical, any proof must involve probabilistic reasoning.
Our particular concern is variable execution time, particularly where it gives
rise to leakage channels. Recall Figure 2.17, showing the response time of
a system using strcmp. Reasoning about the distribution of response times
was crucial in calculating the channel capacity. This is a correctness-critical
security property that is unavoidably probabilistic.

Security Properties

Returning again to the guessing attack, imagine that our adversary guesses in
decreasing order of probability, updating these probabilities dynamically, as
did the optimal attacker described in Section 2.4. Here, as there, our security
condition is that it does not guess correctly in fewer than k attempts.

For a functional security property, we would calculate the set of initial
states that guarantee that the property holds in the final state: its weakest
precondition (wp). Security could be assured by showing that the initial state
lies in this set.

In a probabilistic system, however, it might be that from any initial state,
there is a nonzero (albeit small) probability that the final state is insecure. This
occurs, for example, if the attacker guesses randomly. The most we could then
hope to find is the probability that the final state is secure.

What we need is a probabilistic analogue of the weakest precondition.
Consider the weakest precondition as a function that takes only the value 0
or 1, depending on whether a state is in the weakest precondition set or not.
Could we instead return some value between 0 and 1? Instead of answering
“secure” or “not secure” for a state, answering “secure with probability p”?
We could then show that the system remains secure with probability > p, if
wp > p in the initial state. In pGCL we find just such an analogue. This is an
extension of Dijkstra’s guarded command language (GCL) [Dijkstra, 1975],
with a unified treatment of both demonic and probabilistic nondeterminism.
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Refinement and Security

The standard problem with refinement in security is nondeterminism. Writing
a ; ; b for ‘do a then b’, c u d for ‘do c or d’, and h := x for ‘assign x to h’,
consider the following program:

h := secret ; ; (l := 0 u l := 1) where secret ∈ {0, 1}

Let h (high) be hidden, and l (low) be visible. We wish to formalise the
statement: ‘The value in l doesn’t reveal the value in h’. Writing a v b for ‘b
refines a’, meaning that every trace1 of b is also a trace of a, the following is a
valid refinement:

h := secret ; ; l := h

This clearly violates the security property, but is permissible as every action it
takes, could have been taken by the specification.

For a propertyQ to survive refinement, writing ` for predicate entailment,
we need that

a v b

wp a Q ` wp b Q whence by transitivity,

P ` wp a Q

P ` wp b Q

This simply states that any property that holds of the specification, holds of
the implementation. We have demonstrated that some intuitively reasonable
properties are not preserved by refinement—we need to make sure we choose
one that is.

Returning to pGCL, we have a novel notion of entailment. We write2

P � Q for comparison defined pointwise i.e. ∀s. P s 6 Q s. If P � Q, then
P has a lower value in every state than does Q. We also write3 «P» for the
embedding of the boolean predicate P as real-valued function (an expectation):

«P» s = if P s then 1 else 0 noting that P ` Q↔ «P» � «Q»

We can now model our guessing attack as:

(h := 0 u h := 1) ; ; (l := 0 1/2⊕ l := 1) (4.1)

1A trace is any sequence of valid states of a program. Trace refinement implies
that the implementation is allowed to take any step that the specification can take.

2We differ in syntax, as the symbolV is not readily available within Isabelle
3Again we differ, as the established syntax, [·], clashes with lists.
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where the secret (h) is chosen nondeterministically, and the guess (l) ran-
domly (a p⊕ b denotes probabilistic choice between programs a and b, with
probability p for a).

We inherit a family of structural refinement rules, for example a u b v a
(a choice is refined by either alternative), and the following relations:

WP_REFINES

a v b

wp a Q � wp b Q whence

P � wp a Q

P � wp b Q

which are the probabilistic equivalents of the previous refinement conditions.
We have therefore, that h := 0 ; ; (l := 0 1/2⊕ l := 1) is a refinement of
Equation 4.1, but importantly, (h := 0 u h := 1) ; ; l := h is not. In contrast to
demonic choice, probabilistic choice cannot be refined away.

A refinement in pGCL establishes a predicate with at least as high a proba-
bility as does its specification. Thus if our predicate is ‘the system is secure’,
and we are content with establishing its minimum probability, refinement by
definition only increases this.

This reasoning applies only to security predicates: security properties that
can be established by inspecting only the current state. Not all properties can
be expressed in this way: some can only be expressed by considering some
set of possible traces of the system. Our guessing-attack model, however,
is carefully constructed such that security is only dependent on the current
state: a system is secure (by definition), if the attacker has not yet guessed
the secret. While this property does refer to traces (specifically, the history
from any point), this can be modelled using a shadow variable: the list of past
actions is appended to the state. This is the approach we take in Chapter 6,
where we formally derive leakage bounds on a guessing attack in pGCL.

The guessing attack model is thus refinement sound in pGCL.

4.2 The pGCL Language

We now summarise pGCL more completely, noting our small variations in
syntax relative to the standard presentation. This summary is naturally in-
complete, and the interested reader is directed to the aforementioned work of
McIver and Morgan [2004].

Programs in pGCL have two interpretations: The first is as a probabilistic
automaton, moving from a starting state to some final state, with well-defined
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probability. The second is as an expectation transformer, mapping a real-valued
function on final states (a post-expectation), to one on initial states (a pre-
expectation). The weakest pre-expectation (wp, overloading this term) of a
post-expectation at some initial state is the smallest expected value (minimised
over demonic choices) of the post-expectation in the final state. For example,
the weakest pre-expectation of the expression x, under the program

(x := 1 1/2⊕ x := 0) u (x := 2 1/3⊕ x := 1)

is

min
(

1
2
× 1 +

1
2
× 0
) (

1
3
× 2 +

2
3
× 1
)

=
1
2

We mechanise the expectation-transformer interpretation, but the two are
equivalent. The probabilistic automaton is generally more intuitive, giving
the most straightforward way to visualise results.

Programs are constructed using several operators, including some already
mentioned:

• Sequential composition: a ; ; b.

Composition is interpreted either as ‘do a, then b’, in the automaton
case, or as ‘apply a to the result of b’ in the expectation transformer case.

• Name binding: n is f in a n, where f is a function from state to value.

This is purely syntactic, and simply binds a complex expression for
reuse. This primitive is novel to our formalisation, but is a common
feature of functional languages.

• Applying a state transformer: Apply f.

This is the primitive operator for state updates. It is usually hidden by
the syntax translations for records described below.

• Demonic choice: a u b or
d
x ∈ S. a x

The first of these is binary choice, which can be repeated in the obvious
way to express any finite choice. The second is convenient for expressing
a either a large finite choice or infinite branching. In doing so, we
must be careful that the program remains well-defined. For example,
wp (

d
x ∈ Z. Apply

(
λ_. x

)
x is not well-defined: there is no minimum

(or even a well-defined infimum) for x’s final value.
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Rather than enforce this syntactically or through types, the user is forced
to discharge a verification condition that the primitive is well formed,
for example by appealing to finiteness. Our reason for this is that we
will later (in Chapter 6) need to allow well-defined infinite choices, in
order to abstract over possible strategies for an attacker.

• Probabilistic choice: a p⊕ b, or 8 x ∈ S · a x@ P x

As for deterministic choice, but constrained by a particular distribution.
The transformer interpretation is as the sum over possibilities, weighted
by probability. This primitive is well defined even for infinite choices.

• Finite repetition: an = a ; ; . . . ; ; a︸ ︷︷ ︸
n

.

• Lifting from a non-probabilistic monad: ExecM.

This connects with our existing work on monadic Hoare logic [Cock et al.,
2008], by embedding a monad into pGCL. We return to this in Section 4.4,
and again in Section 5.2, where we demonstrate its application and the
lifting of Hoare triples.

• Recursion: µx. T x

Recursion is defined as the fixed point of a single recursive equation. The
µ operator binds a transformer (of type (σ → R) → σ → R), to which
the recursive equation T is applied. We expand on this in Section 4.4.

• Looping: do G→ a od

This is syntactic sugar for recursion, see Equation 4.3.

• Failure: abort & Success: skip

The two remaining primitives are the diverging program abort, and the
do-nothing program skip.

While programs may have any state type, in practice we use Isabelle’s
record types: tuples with labelled fields, analogous to C structures. The advan-
tage is that through syntax translations, we are able to use the field identifiers
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as pGCL variable names. For example:

x := v =⇒ Apply
(
λs. x_update (λ_. v) s

)
x :∈S =⇒

l
s ∈ S. x := s

x :∈S atP x =⇒ 8 s ∈ S · x := s@ P s

The assertion language is shallowly embedded, closely resembling that of
GCL. There are a few novel probabilistic constructions:

• Entailment: P � Q ⇔ ∀s. P s 6 Q s usuallyV

• Conjunction: P&& Q ⇔ λs. max 0 (P s+Q s− 1) usually &

• Embedding: «P» ⇔ λs. if P s then 1 else 0 usually [P]

We have already introduced probabilistic entailment and embedding. The
form of probabilistic conjunction is chosen for compatibility with its boolean
equivalent: «P» && «Q» = «λs. P s∧Q s». We use this particular form (rather
than, for example P&& Q = λs. P s × Q s, which gives the same results
on embedded predicates) for technical reasons concerning the underlying
semantic interpretation4.

The following is an example specification in expectation-entailment style
that illustrates the essential features of the logic:

«P» && (λ_. p) � wp (a ; ; b) «Q»

This states that from any initial state satisfying P, after executing a followed
by b, we reach a state satisfying Qwith probability at least p.

4.3 The pGCL Theory Package

We present a package of related theories, that implement a shallow embedding
of pGCL in Isabelle/HOL. The sources can be found in the pGCL subdirectory

4Briefly, the definition given is the only option that is sub-linear, a generalisation
(to real-valued functions), and weakening, of the linearity condition required of
expectation transformers in pure GCL. All sub-linear transformers are linear, and
sub-linearity reduces to linearity in the case of embedded boolean predicates, but
(for example) demonic choice, a u b = λs. min (a s) (b s), is not linear if a or b take
values other than 0 and 1. All pGCL primitives are sub-linear. For further details, see
McIver and Morgan [2004].
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wp abort R = λs. 0
wlp abort R = λs. bound_of R

wp skip R = R

wp (Apply f) R = λs. R (f s)

wp (a ; ; b) R = wp a (wp b R)

wp (a u b) R = λs. min (wp a R s) (wp b R s)

wp (
l
x ∈ S. a x) R = λs. inf

x∈Ss
wp a x R s

wp (a p⊕ b) R = λs. p s×wp a R s+ (1 − p s)×wp b R s

wp (8 x ∈ S · a x@ P x) R = λs.
∑
x∈Ss

P x×wp a x R s

wp (µx. T x) R = lfp T R
wlp (µx. T x) R = gfp T R

Figure 4.1: The expectation-transformer interpretation for both wp and wlp.

of the attached material. With the few previously noted exceptions, we retain
existing syntax. The advantage of a shallow embedding is the ease with
which we can apply the existing machinery of Isabelle/HOL to the underlying
arithmetic. The disadvantage is that we cannot appeal to results shown on a
stricter type, in particular Isabelle’s fixed-point lemmas, which are tied to the
typeclass of complete lattices. We return to this point in Section 4.4.

As mentioned, the language models imperative computation, extended
with both nondeterministic and probabilistic choice. Nondeterminism (by
default) is demonic, with respect to the postcondition of a program: A demonic
choice is always assumed to be taken so as to minimise the likelihood of the
postcondition being satisfied.

The Expectation-Transformer Model

As described, the intuitive interpretation of a program, its operational se-
mantics, is as a probabilistic automaton: from a given state, the program
chooses the next randomly. The program is thus a forward transformer, taking
a distribution on initial states to one on final states.

For mechanisation, we are more interested in the alternative interpretation
of a program: as a reverse transformer. Here, the program maps a function
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on the final state to one on the initial state: a ‘real-valued predicate’. These
generalised predicates are the expectations of Section 4.1, and are the bounded,
non-negative functions from the state space σ, to R:

bounded_by b P = ∀s. P s 6 b bounded P = ∃b. bounded_by b P

nneg P = ∀s. 0 6 P s sound P = bounded P ∧ nneg P

The strict (wp), and liberal (wlp) interpretations are given in Figure 4.1. The
liberal interpretation differs only for abort and µ: the distinction is explained
in Section 4.4. That the forward and reverse interpretations are equivalent has
been established [McIver and Morgan, 2004], although we have not mecha-
nised the proof.

To see that this model provides the probabilistic weakest precondition
demanded in Section 4.1, note that the expectation «R» : σ → R>0 gives,
trivially, the probability that the predicate R holds (the state is of type σ)
. This interpretation is preserved under transformation: wp prog R sinitial

is the probability that R will hold in the final state, if prog executes from
sinitial. Equivalently, it is the expected value of the predicate after executing,
minimised over all demonic choices:

∑
sfinal

P(sfinal|sinitial)× «R» sfinal, hence
the term expectation.

A program is modelled as a function from expectation to expectation: (σ→
R) → σ → R. This maps a post-expectation to its weakest pre-expectation.
For a standard post-expectation, the embedding of a predicate (e.g. «P»), this
is the greatest lower bound on the likelihood of it holding in the final state.

Not all transformers (functions of type (σ → R) → σ → R) are valid.
We impose a number of healthiness conditions (slightly weaker than the stan-
dard versions given by McIver and Morgan [2001]), that define well-behaved
transformers. We combine the treatment of strict transformers (weakest pre-
condition, giving total correctness) and liberal transformers (weakest liberal
precondition, giving partial correctness) by working in the union of their
domains. This basic healthiness is defined as the combination of feasibility,
monotonicity and weak scaling:

feasible t = ∀P. bounded_by b P ∧ nneg P →

bounded_by b (t P)∧ nneg (t P)

mono_trans t = ∀PQ. (sound P ∧ sound Q∧ P � Q)→ t P � t Q

scaling t = ∀P s. (sound P ∧ 0 < c)→ c× t P s = t (λs. c× P s) s
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hide = P := 1 u P := 2 u P := 3
guess = G := 1 λs. 1/3⊕ (G := 2 λs. 1/2⊕ G := 3)

reveal = C :∈
(
λs. {1, 2, 3}− {P s, G s}

)
switch = G :∈

(
λs. {1, 2, 3}− {C s, G s}

)
monty switch = hide ; ; guess ; ; reveal ; ; if switch then switch else skip

Figure 4.2: The Monty Hall game in pGCL.

Stronger results are established on-the-fly by appealing to one of several
supplied rule sets.

A well-defined program has healthy strict and liberal interpretations,
related appropriately:

well_def a = healthy (wp a)∧ healthy (wlp a)∧

(∀P. sound P → wp a � wlp a)

Reasoning with pGCL

The rules in Figure 4.1 evaluate the weakest pre-expectation of non-recursive
program fragments structurally. If the resulting term is not too large, the
simplifier can calculate it exactly. We also support two other approaches:
Modular reasoning by structural decomposition, and the verification condition
generator (VCG). Examples are given in Isabelle proof script.

Consider Figure 4.2, a model of the Monty Hall problem [Selvin, 1975;
Hurd et al., 2005]. The scenario is a game show: A prize is hidden behind one
of three doors (hide), of which the contestant then guesses one (guess). The
host then opens a different door, (reveal), showing that it does not hide the
prize. The contestant now chooses: to switch to the unopened door (switch),
or to stick to the original (skip). Is the contestant is better off switching?

The victory condition, and hence the probability of the contestant winning
and from a given starting state s, is given by the weakest precondition:

win g = (G g = P g) P(win) = wp (monty switch) «win» s
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Proof by unfolding If switch is false, we can solve by explicitly unfolding the
rules in Figure 4.1. This approach was demonstrated by Hurd et al. [2005] As
expected, the contestant has a 1/3 chance of success:

lemma wp_monty_switch: "λs. 1/3 � wp monty false �wins�"

unfolding monty_def hide_def guess_def reveal_def switch_def

by(simp add:wp_eval insert_Diff_if)

Proof by decomposition If switch is true the state space grows dramatically,
and such a straightforward proof rapidly becomes infeasible (though it is still
just possible in this case). Modular reasoning lets us scale further. Luckily, the
weakest precondition semantics of pGCL admit familiar composition rules:

WP_STRENGTHEN_POST

P � wp p Q Q � R healthy (wpp) sound Q sound R

P � wp p R

WP_SEQ

Q � wp b R

P � wp a Q healthy (wp a) healthy (wp b) sound Q sound R

P � wp (a ; ; b) R

The healthiness and soundness obligations result from the shallow embed-
ding.

To integrate with Isabelle’s calculational reasoner, we define probabilistic
Hoare5 triples:

WP_VALIDI
P � wp a Q

{P} a {Q}

WP_VALIDD
{P} a {Q}

P � wp a Q

VALID_SEQ

{P} a {Q}

{Q} b {R} healthy (wp a) healthy (wp b) sound Q sound R

{P} a ; ; b {R}

Note that VALID_SEQ is simply the composition of WP_COMPOSE with WP_VALIDI
and WP_VALIDD.

5The classical Hoare triple {P} a {Q} states that if P holds initially then after
executing a, Q is guaranteed to hold.



4.3. THE PGCL THEORY PACKAGE 115

We need one final rule, peculiar to pGCL and its real-valued expectations:

WP_SCALE

P � wp a Q healthy (wp a) sound Q 0 < c

(λs. c× P s) � wp a (λs. c×Q s)

This follows from the healthiness of the transformer, and allows us to scale
the pre- and post-expectations such that the latter ‘fits under’ some target. To
illustrate, consider the ‘obvious’ specification of hide:

λs. 1 � wp hide «p ∈ {1, 2, 3}» (4.2)

This states that with probability 1, the prize ends up behind door 1, 2 or 3.
In evaluating our preconditions stepwise, however, we find that the weakest
precondition of the remainder of the program is in fact:

λs. 2/3× «p ∈ {1, 2, 3}» s

Applying rule WP_SCALE to Equation 4.2 we derive a scaled rule:

λs. 2/3 � wp hide (λs. 2/3× «p ∈ {1, 2, 3}» s)

Finally the probability of success if the contestant switches is at least6 2/3:
declare valid_Seq[trans]

lemma wp_monty_switch_modular: "λs. 2/3 � wp monty true �wins�"

proof(rule wp_validD)

note wp_validI[OF wp_scale, OF wp_hide, simplified]

also note wp_validI[OF wp_guess]

also note wp_validI[OF wp_reveal]

also note wp_validI[OF wp_switch]

finally show "λs. 2/3 � wp monty true �wins�"

unfolding monty_def

by(simp add:healthy_intros sound_intros monty_healthy)

qed

Here, we take advantage of the calculational reasoning facility of Isabelle,
as described by Bauer and Wenzel [2001]. The intermediate Hoare triples
are automatically derived, by applying VALID_SEQ to the previous relation
and the supplied specification. Finally, we again discharge all side conditions
using the simplifier.

6In fact it is exactly 2/3, but our object is to demonstrate an entailment proof. In
more complicated situations, calculating the exact pre-expectation is impractical.
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Proof by VCG Alternatively, we can pass the component specifications to
our verification condition generator (VCG), which follows a similar strategy
to the above, automatically matching the appropriate rule to the goal. The
VCG leaves behind an inequality between the target pre-expectation and that
calculated internally (generally not the weakest). In this case, the final goal is
trivial enough to be discharged internally.

lemmas scaled_hide = wp_scale[OF wp_hide, simplified]

declare scaled_hide[wp] wp_guess[wp] wp_reveal[wp] wp_guess[wp]

declare healthy_wp_hide[health] healthy_wp_guess[health]

healthy_wp_reveal[health] healthy_wp_switch[health]

lemma wp_monty_switch_vcg: "λs. 2/3 � wp monty true �wins�"

unfolding monty_def by(simp,pvcg)

The above proofs are available in pGCL/Examples/Monty.thy.

Loops and Recursion

We cannot unfold loops syntactically, as we would simply recurse endlessly.
The treatment of recursion in pGCL is well developed, and we incorporate
some of this work, specifically regarding loops. This area is still under devel-
opment, but we already provide several useful rules, including this, which is a
specialisation of lemma 7.3.1 of McIver and Morgan [2004]. This gives the cor-
rectness condition for standard post-expectations on loops which terminate7

with probability 1:

WP_LOOP

well_def (wp body)
sub_distrib (do G→ body) (λs. «G» s× «I» s) � wp body «I»

«I» && wp (do G→ body) (λs. 1) � wp (do G→ body) (λs. «NG»× «I»)

Here, NG is the negation of the guard: λs. ¬G s.

4.4 Implementation and Extensions

We now expand on some of the more interesting details of the implementation,
and how it can be extended with new primitives. A significant amount

7This is a weaker condition than terminating along all paths: Non-terminating
traces with probability 0 are acceptable. Imagine flipping a coin until it shows heads.
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a ; ; b = λab. (a ab) ◦ (b ab)
abort = λab. if ab then λs. 0 else λs. bound_of P

Embed f = λab. f
µx. prog x = λab. if ab then lfp_trans (λt. prog (Embed t) ab)

else gfp_trans (λt. prog (Embed t) ab)

wp a = a True
wlp a = a False

Figure 4.3: The underlying definitions of selected pGCL primitives.

of legwork was unfortunately necessary, as the existing infrastructure (the
fixed-point theory) could not be straightforwardly applied to our semantic
structures, as we will shortly see.

Implementing wp and wlp

Figure 4.3 details the implementation of several primitives, together with the
definitions of wp and wlp. Programs are represented as their associated trans-
former, parameterised by the treatment of abort (the parameter ab), giving
either strict or liberal semantics. Only abort and µ change their behaviour
between wp and wlp: The former gives either failure (λP s. 0) or success
(λP s. bound_of P), whereas the latter is the least or the greatest fixed point,
respectively. All others, as for (; ;), simply pass ab inward.

Consequences of a Shallow Embedding

The very shallow embedding used has two important consequences, the first
of which is negative. The healthiness of transformers, and soundness of expec-
tations, must be explicitly carried as assumptions. A deeper embedding, such
as that of Hurd et al. [2005] could restrict to the type of healthy transformers,
in which case these would be satisfied by the type axioms.

We avoid such an embedding to reuse as much of the mechanisation within
Isabelle/HOL as possible. Reasoning within a fresh type requires lifting (and
modifying) all necessary rules. The recent integration of the lifting package
into Isabelle makes doing this simpler, but there is still a large body of existing
automation that would need to be reinvented. The burden of discharging
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type_synonym (σ,α) nondet_monad =

σ⇒ (α× σ) set× bool
{|P|} f {|Q|} = ∀s. P s→ (∀(r, s ′) ∈ fst (f s). Q r s ′)
no_fail P m = ∀s. P s→ ¬(snd (m s))

Exec :: (σ,α) nondet_monad⇒ σ prog
ExecM = λab R s.

let (SA, f) =M s in Run the monad
if f then abort ab R s Fail is Abort

else if SA = {} then (bound_of R) Stuck is Success
else let S = snd „SA in Ignore result

glb (R „S) Infimum over states

Figure 4.4: The L4.verified non-deterministic monad in Isabelle.

our side conditions is, moreover, not high. For any primitively constructed
program, healthiness follows by invoking the simplifier with the appropriate
lemmas.

The positive consequence of an extremely shallow embedding is the ease
with which it can be extended. We have already seen an example: the defini-
tion of demonic choice from a set (following a standard abbreviation [McIver
and Morgan, 2004]). To do so, one need only supply weakest-precondition
(and weakest-liberal-precondition) rules, rules to infer healthiness and (op-
tionally) rules for proof decomposition.

It is not necessary to show that the new primitive is sound, that is, produces
a healthy transformer for all inputs. It is merely necessary that the supplied
rules show healthiness for just those cases in which it is actually used. Set
demonic choice is just such a partially sound primitive: Healthiness does not
generally hold for infinite sets. Applied to finite sets, as it is here, the supplied
rules establish healthiness.

As a further example, we embed the non-deterministic monad at the heart
of the L4.verified proof. The existing definition, Figure 4.4, is as a function
from states (σ) to a set of result (α), state pairs. The extra result is the failure
flag, used to explicitly signal failure. This was added to ensure that termina-
tion is preserved under refinement, as described elsewhere [Cock et al., 2008].
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We embed as follows: Stuck (no successor states) is success, for compatibility
with our infimum-over-alternatives interpretation. Explicit failure is abort,
which is in turn either success or failure under wp or wlp, respectively. We
lift results as follows:

WP_EXEC

{P} prog {λr s. Q s} no_fail P prog ∃s. P s

«P» ` wp prog «Q»

WLP_EXEC

{P} prog {λr s. Q s} ∃s. P s

«P» ` wlp prog «Q»

Note that the difference between wp and wlp is simply termination.

Induction and the Lattices of Expectations and Transformers

Handling recursion means reasoning about fixed points. In this case, we need
both least and greatest, on expectations and transformers. Due to the shallow
embedding, we cannot appeal to the existing fixed point results, which are
phrased on a complete lattice. Neither the underlying type for expectations
(α→ R) or for transformers ((α→ R)→ α→ R) can be so instantiated, due
to the lack of both top and bottom elements. The solution in each case is
different.

Sound expectations have an obvious bottom element, λs. 0, but there is
no universal upper bound. We only require that there exists a bound for any
given expectation. There need not exist any bound on an arbitrary set of
sound expectations. For example, with α = N, consider the set

{λs. if s = n then n else 0 : n ∈ N} .

Each expectation is bounded (by n) and non-negative, yet the least upper
bound, λs. s is itself unbounded.

We need a surrogate for the top element. To illustrate, take our definition
for greatest fixed point:

gfp_in f S = if ∃x ∈ S. x 6 f x then lub {x ∈ S. x 6 f x} else lowerbound S

A lower bound is easy (λs. 0), but in order to find the least upper bound,
we need some upper bound. In a complete lattice, this is the top element.
Instead, we appeal to feasibility:

bound_of ((µx. f x) Q) 6 bound_of Q
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and thus

(µx. f x) Q 6 λs. bound_of Q .

It is therefore sufficient to consider fixed points that are weakly bounded by Q:

weakly_bounded_by Q = {R. sound R∧ bound_of R 6 bound_of Q}

Finally, we establish the standard fixed-point results parameterised by Q, for
example:

GFP_IN_UNFOLD

healthy t

gfp_in t (weakly_bounded_by P) = t (gfp_in t (weakly_bounded_by P))

The case of transformers is simpler, again due to feasibility:

t P s 6 bound_of P and thus t 6 λP s. bound_of P

Thus we have a top element, and establish a complete lattice by means of a
quotient [Huffman, 2012].

le_trans t u = ∀P. sound P → t P 6 u P

equiv_trans t u = le_trans t u∧ le_trans u t

htrans_real t u = healthy t∧ healthy u∧ equiv_trans t u

quotient_type σ trans = (σ→ R)→ σ→ R /partial : htrans_rel

Using the induced homomorphism, we draw back the standard results:

GFP_TRANS_UNFOLD

∧t. healthy t ` healthy (T t)

∧t u. [healthy t; healthy u; le_trans t u] ` le_trans (T t) (T u)

equiv_trans (gfp_trans T) (T (gfp_trans T))

The Verification Condition Generator

The VCG (tactic pvcg), is simple but nonetheless capable handling Figure 4.2.
It alternates applying an entailment rule, and attempting to discharge side-
goals using internal and user-supplied rules.

The user supplies specifications as proved entailment rules, tagged with
[wp], and healthiness rules, tagged with [health]. Internal rules are tagged
[wp_core]. The VCG selects rules in this order:
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1. User-supplied rules, as written.

2. User-supplied rules, with a strengthened postcondition:
[wp_strengthen_post[OF rule]]. This leaves a side-goal that the post-
condition of the supplied rule entails the strengthened version.

3. Internal rules.

A user-supplied rule will override an internal rule, and may refer directly
to a compound structure e.g. P � wp (a ; ; b) Q. The given rule will be used
rather than unfolding the composition. If no user rule is found, the VCG will
proceed using its internal rules, calculating the exact weakest precondition by
unfolding.

4.5 Related Work

The pGCL language of McIver and Morgan [2004] extends the treatment of
conventional nondeterministic programs, particularly that of Dijkstra [1975],
from which the core syntax is derived. Treatments of the semantics of proba-
bilistic programs had previously appeared, e.g. Kozen [1985], although these
tended to abandon classical nondeterministic choice in favour of probabilistic
choice. The work of McIver et. al. was the first to uniformly treat both forms
of nondeterminism, in a standard verification framework.

Mathematically, calculating the weakest pre-expectation of program in
pGCL is known to be equivalent [Gretz et al., 2014] to finding the expected re-
ward for an appropriately-constructed Markov decision process (MDP) [White
and White, 1989]. There now exists a formal treatment of Markov models
(including rewards) in Isabelle, due to Hölzl and Nipkow [2012]. We plan to
unify this with our formalisation of pGCL, to provide it with an operational
semantics, and a formal connection to Isabelle’s existing probability theory.

Interactive theorem provers, such as Isabelle, already host many existing
models of programming language semantics [Nipkow, 2002; Mossakowski
et al., 2010; Cock et al., 2008; Harrison and Kieburtz, 2005]. Relative to these,
the novelty here is that pGCL allows us to treat probabilistic properties and
programs.

A previous formalisation of pGCL, in the HOL4 theorem prover, was
presented by Hurd et al. [2005]. The principal difference to this work is the use
of a deep, rather than shallow embedding. As we have described, our shallow
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embedding allows us to take advantage of the powerful tool and theory
support that Isabelle offers. The second advantage is the ease with which we
are able to integrate other shallowly-embedded models, as demonstrated with
the nondeterministic monad. Our worked example, Monty Hall, is adapted
from theirs.

Coble [2010] investigated the problem of formally verifying anonymity in a
theorem prover (HOL4). While the specific motivation is different (anonymity
versus secrecy), the problems are quite close, and Coble also treats probability
at length, providing a substantial library of formalised probability theory.
Rather than taking such a ground-up approach, we have adopted an existing
logic (pGCL), and tackle probability in a comparatively simplistic manner,
which has nevertheless proved adequate. Instead, we have invested more
effort in developing a framework that should scale to larger, more realistic sys-
tems, and in evaluating (and verifying) leakage measures other than Shannon
entropy.

While we approach this area from the perspective of system security,
others have arrived at similar approaches in the field of cryptography. Barthe
et al. [2009] presented an automated theorem prover, CertiCrypt, tailored
to verifying provably-correct cryptographic algorithms. This tool has been
superseded by the authors’ more recent EasyCrypt [Barthe et al., 2012b].

The language in which algorithms are expressed in these tools is quite
similar to pGCL, incorporating true probabilistic choice alongside recursion.
Although expressed in different terms, the language of Barthe et. al. incorpo-
rates a notion of refinement: the monotone transformations. These are transfor-
mations of a system model (here a game) that never decrease the probability
of certain events. For game G and event A, a transformation h is monotone if
(in the author’s syntax) PrG[A] 6 h(PrG′ [A′], or the probability of the trans-
formed equivalent of event A, A′, in the transformed game G′, is at least as
high as that of A in G. This is exactly the notion of refinement introduced in
Section 4.1 for pGCL—refinement increases the probability of events.

The treatment of classical nondeterminism in CertiCrypt and EasyCrypt
is not as thorough as that of pGCL. Nondeterminism (expressed by distribu-
tions that sum to less than one) is only introduced by non-termination or (for
EasyCrypt) by assertions. In contrast, pGCL also provides nondeterministic
choice as a language primitive, which is essential in order to model classical
specification–implementation refinement. It would probably be possible to



4.6. SUMMARY 123

unify the two languages, although the EasyCrypt semantics would need to be
modified. In particular, the transformers of Barthe et al. [2011] are assumed to
be additive i.e. µ(f+ g) = µf+ µg. Transformers in pGCL, however, are only
sub-additive: µf+µg 6 µ(f+g), and it is precisely nondeterministic choice that
introduces strictly sub-additive transformers (recall that a nondeterministic
choice gives the least probability among the alternatives). The other assump-
tions (monotonicity, multiplicative linearity, continuity) map precisely onto
the healthiness conditions of pGCL. Unifying the two approaches would be
an interesting and potentially valuable project.

4.6 Summary

In this chapter, we stepped back from the low-level approach of Chapter 3, to
consider how we might reason formally about the sorts of stochastic behaviour
that we see in real covert and side channels. In particular, we need to find an
approach that fits with the refinement-driven correctness proof of seL4, which
forms the testbed for our more practical work.

Our approach is to take the existing language pGCL, and mechanise its
logic in the Isabelle/HOL theorem prover, as used in the L4.verified project.
We have demonstrated a useful degree of automation, and the integration of
the nondeterministic state monad that underlies the seL4 specification. We
return to this specific detail at more length in the following chapter, where
we demonstrate that our mechanisation can be used to prove probabilistic
security properties for real systems.





5 Case Study —
Lattice Scheduling

This chapter draws on work first presented in the following paper:

David Cock. Practical probability: Applying pGCL to lattice scheduling. In
Proceedings of the 4th International Conference on Interactive Theorem Proving,

pages 1–16, Rennes, France, July 2013. Springer.
doi:10.1007/978-3-642-39634-2_23

As a more substantial example than that of Figure 4.3, we attack a much
larger, and more obviously security-focused problem. Our goal is to demon-
strate that mechanically verifying realistic probabilistic software, with proba-
bilistic properties, is feasible. Our ‘realistic probabilistic program’ is a hybrid
probabilistic lattice-lottery scheduler, designed to minimise the number of
flushes required to completely close the cache channel (described in Sec-
tion 3.2), while guaranteeing fairness and remaining simple and efficient.

The probabilistic properties of our program are: stochastic fairness — that
the probability of starvation for any domain is zero, and non-leakage — that
the distribution of observable outputs is independent of hidden inputs. Finally,
we make our argument for feasibility by showing that we can incorporate
the existing seL4 results in a probabilistic setting. We are able to restrict
probabilistic reasoning to small regions, allowing the remainder of the proof
to proceed in a traditional manner.

We begin with an abstract, nondeterministic specification, which we refine
iteratively. Our first refinement is to a probabilistic version, and then to a
practical implementation based on lottery scheduling. We demonstrate that
this refinement could be continued using the L4.verified results. Finally, we
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Figure 5.1: The classification/clearance lattice.

attach a hardware model, allowing us to demonstrate that we do in fact
eliminate leakage through the cache.

All lemmas in this chapter have been formally verified in Isabelle.

5.1 Security Policies and Covert Channels

Consider a hierarchically partitioned system, as depicted in Figure 5.1. Here,
all data is classified with one (or both) of the labels A and B. An agent (pro-
gram) may be cleared to process one, both, or neither of these, giving rise to 4
clearance domains: 1 for A only, 2 for B only, 3 for both and ⊥ for neither. Our
goal is to ensure that information derived from labelled data can only flow
into a domain cleared to process it. Enforcing such access policies, encom-
passing explicit channels, is a well-studied problem [Denning, 1976]. We are
interested in eliminating flows through covert and side channels, specifically
the cache.

We again consider the cache contention channel introduced in Section 3.2.
Recapping briefly, if two processes in distinct clearance domains (say 2 and 3)
are executed on the same processor, they may be able to use cache contention
to communicate in violation of the security policy, even if all explicit channels
are removed. Exactly the same mechanism that we investigated previously
would apply: the higher-clearance process (domain 3) can deliberately vary its
working set, to evict some fraction of the lines belonging to the low-clearance
process (domain 2). As the low process can detect cache misses (as already
demonstrated), this forms a channel.
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Figure 5.2: The scheduling graph: S.

5.2 Countermeasures through Refinement

In this instance, we consider a different countermeasure to those already
described (colouring and instruction-based scheduling)—we flush the entire
cache on a context switch. This will eliminate any interference, but it will not
be cheap: The Intel Xeon E7-8870, a high-end modern processor, has a 30MiB
L3 cache, taking 2.5× 106 cycles to refill (at the peak theoretical bandwidth of
the memory subsystem), or 89% of the 2.8×106 cycles per preemption interval
at 1000Hz. Nevertheless, the high degree of isolation offered by flushing
might make it worthwhile for a sufficiently sensitive system, especially if we
can amortise the cost.

A simple optimisation, due to Hu [1992a], is to exploit the security policy
to avoid most cache flushes. In our partitioned system, it is acceptable to per-
mit leakage from a domain to any higher domain—it is only necessary to flush
when decreasing clearance level. This is the essence of lattice scheduling: Tran-
sition upward in the classification lattice for as long as possible, before finally
starting again at the bottom, employing countermeasures (cache flushing) to
protect the downward transition.

To implement this, we construct the scheduling graph, S, Figure 5.2, from the
classification graph in Figure 5.1. The scheduling graph gives valid domain
transitions for the system, and contains only edges from the classification
graph, or transitions to the downgrader1, ⊥. Downward transitions have
dashed arrows. In the implementation, the cache is flushed on entering the
downgrader. We omit the edges from ⊥ to 3 and from 1 to ⊥ to emphasise
that not all edges need be included.

1The downgrader could just as easily be > in the lattice: it is trusted both to read
from a high domain, and to write to a low domain, as it does nothing but flush the
cache.
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Figure 5.3: The transition graph: T .

The conditions on the scheduling graph (modelled as a relation) are cap-
tured as assumptions on S (encapsulated within an Isabelle locale), with the
most important being downgrading:

Lemma 5 (Downgrading): If S allows a downward transition, it is to the
downgrader, ⊥:

(c,n) ∈ S clearance c * clearance n

n = ⊥

We specify the scheduler nondeterministically over the valid transitions
from the current domain, using the unconstrained demonic choice operator, :∈.

record stateA = current_domain :: dom_id

scheduleS =

c is current_domain in

current_domain :∈ (λ_. {n. (c,n) ∈ S})

The statement ‘x is y in (z x)’ binds the name x to the current value of
the expression y, before evaluating z, while ‘y :∈ S’ updates the variable y
nondeterministically, with some value from the set S.

A Randomised Scheduler

This classically nondeterministic specification, together with the downgrading
property, captures the requirement that all downward transitions pass through
the downgrader. As a practical specification however, it has a problem: it
allows starvation. A refinement of this specification is free to follow any trace
within the graph, for example (⊥, 2,⊥, 2, . . . ), never scheduling domain 3.
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We could extend the specification to guarantee starvation freeness, by
dictating its behaviour over traces in a modal logic. This would risk obscuring
its present simplicity, and would require a more complex implementation.

Randomisation provides an elegant alternative: By assigning a probability
to each edge in Figure 5.2, we produce the transition graph, T , in Figure 5.3.
The outgoing probabilities from each node sum to 1, and any transition with
non-zero probability must appear as an edge in Figure 5.2. Implementation is
simple: We simply choose the next state randomly, according to the transition
probabilities. More importantly, with appropriate transition probabilities
the probability of starvation is zero. We specify the new scheduler using the
probabilistic choice operator:

scheduleT =

c is current_domain in

current_domain :∈ (λ_. {⊥, 1, 2, 3} at (λ_ n. T (c,n))

The statement ‘y :∈ S at P’ updates the variable y probabilistically, with
some value x ∈ S, with probability P x.

This scheduler is a Markov process, with T giving its transition rule. Un-
der the appropriate conditions (strong-connectedness, or positive recurrence
interval for all states), there exists an asymptotic equilibrium distribution.
These conditions are satisfied by the graph of Figure 5.3, and thus in addition
to avoiding starvation, it guarantees statistical fairness.

Program Refinement and Starvation Freedom

In order to show non-leakage, we need to demonstrate that the downgrading
property is also shared by scheduleT. We do so by establishing that scheduleT
is a probabilistic refinement of scheduleS.

Recall the definition of refinement in Equation 4.1: program b refines
program a, written a v b, exactly when all expectation-entailments on a also
hold on b:

P � wp a Q

P � wp b Q
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Lemma 6: The transition scheduler refines the lattice scheduler:

scheduleS v scheduleT

Proof. See theorem refines_ST in 'lattice_sched/LatticeSched.thy', in
the attached material.

Note that, in the terminology of pGCL, the specification of scheduleT is
completely “deterministic”. Here we are referring to the absence of demonic
nondeterminism. This terminology makes sense in light of the refinement
order: Demonic nondeterminism can be restricted by refinement, whereas
probabilistic choice cannot. Once a specification is fully probabilistic, it is
maximal in the refinement lattice, and one can take it no further. This implies
that any further refinement is, in fact, semantic equivalence. We make use of
this fact shortly, as a shortcut to establishing program correspondence.

Having fixed transition probabilities, we formally establish non-starvation.
Proceeding in stages, we first show that starting in any domain, the probability
of ending in domain ⊥ after 4 steps is at least 1/64:

(in_dom di)&&
(
λ_.

1
64

)
� wp scheduleT4 (in_dom ⊥)

where

in_dom d = «λs. current_domain s = d»

We further establish that from domain ⊥, after a further 4 steps, there is a
non-zero probability of ending in any desired final domain:

(in_dom ⊥)&&
(
λ_.

1
64

)
� wp scheduleT4 (in_dom df)

Combining these, we have:(
λ_.

1
4096

)
� wp scheduleT8 (in_dom df) (5.1)

Finally:

Lemma 7 (Non-starvation): Taking at least 8 steps from any initial domain,
we reach any final domain with non-zero probability:

∀s. 0 < wp scheduleT 8+n (in_dom df) s
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DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

Figure 5.4: First refinement diagram.

Proof. By induction on n. Equation 5.1 establishes the result for n = 0. By
inspection of Figure 5.3, we see that every domain is reachable in one step,
and with non-zero probability, from at least one other, and thus if all domains
are reachable after n steps then all are reachable after n+ 1.

See also lemma nostarvation in 'lattice_sched/Fairness.thy'.

Note that this result is strictly stronger than the standard form of nonstar-
vation, “Domain df is eventually scheduled.”: We have established that not
only is df eventually scheduled, it must always be scheduled within 8 steps,
with some nonzero probability.

Figure 5.4 summarises these results. We have downgrading for sched-
uleS and non-starvation for the probabilistic scheduleT, as indicated by the
dotted arrows. Refinement is depicted as a solid arrow. The arrow direc-
tions summarise the compositionality of results: composing with refinement,
downgrading also holds for scheduleT, but non-starvation does not hold for
scheduleS.

Data Refinement and the Lottery Scheduler

It is not sufficient to have an elegant specification, unless that specification can
be practically implemented. Therefore we implement our randomised lattice
scheduler as a lottery scheduler [Waldspurger and Weihl, 1994]. We then only
need the assumption of randomness for a single operation: drawing a ticket.

We extend the abstract state with a lottery for each domain. Every possible
successor domain holds a certain set of tickets, given by the function ‘lottery’.
To transition, the scheduler draws a ticket (a 32 bit word) and consults the
table to choose a successor. To emphasise that the probabilistic component can
be isolated, and to demonstrate compatibility with our existing framework,
we divide the implementation into a core, in the nondeterministic state monad
[Cock et al., 2008], which is then lifted into pGCL using the Exec operator,
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allowing us to employ probabilistic choice. Both scheduleC and scheduleM
operate on the same state space: stateC. The syntax rLx := yM is an Isabelle
record update, assigning value y to field x of record r.

record domain = lottery :: 32 word⇒ dom_id

record stateC = current_domain :: dom_id

domains :: dom_id⇒ domain

scheduleM t = do c← gets current_domain

dl← gets domains

let n = lottery (dl c) t in

modify (λs. sLcurrent_domain := nM)

od

scheduleC = t from (λs. UNIV) at 2−32 in

Exec (scheduleM t)

The statement ‘x from S at P in (z x)’ binds the name x probabilistically
from the set S (at probability P x), before evaluating z.

Having moved to a new state space, we cannot have direct program
refinement between scheduleT and scheduleC. Noting, however, that the
abstract state can be recovered from the concrete by projection, we instead
have (projective) probabilistic data refinement:

Definition 4 (Probabilistic Data Refinement): Program b, on state type σ,
refines program a, state τ, given precondition G : σ → Bool and under pro-
jection θ : σ→ τ, written a vG,θ b, exactly when any expectation entailment
on a implies the same for b, on the projected state and with a guarded pre-
expectation:

P � wp a Q

«G» && (P ◦ θ) � wp b (Q ◦ θ)

Lemma 8: Let ‖S‖ be the cardinal measure (element count) of set S.

Under condition LR, that the lottery reflects the transition matrix,

T (c,n) = 2−32‖{t. lottery (domains s c) t = n}‖
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DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

scheduleC

Figure 5.5: Second refinement diagram.

then under projection φ, which preserves the current domain,

current_domain (φ s) = current_domain s

scheduleC is a data refinement of scheduleT:

scheduleT vLR,φ scheduleC

Probabilistic Correspondence

As already mentioned, scheduleT is maximal in the refinement order, and
thus any refinement is an equivalence. This is probabilistic correspondence:

Definition 5 (Probabilistic Correspondence): Programs a and b are said
to be in probabilistic correspondence, pcorres θ G a b, given condition G and
under projection θ if, for any post-expectationQ, the guarded pre-expectations
coincide:

«G» && (wp a Q ◦ θ) = «G» && wp b (Q ◦ θ)

Probabilistic correspondence is guarded equality on distributions: From
an initial state satisfying G, a and b establish Q with equal probability. The
advantage of detouring via refinement, rather than directly showing corre-
spondence, is that the proof is simpler: the next result follows directly from
Lemma 8:

Lemma 9: The specifications scheduleT and scheduleC correspond given
condition LR and under projection φ:

pcorres φ LR scheduleT scheduleC
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DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

callKernelD

��

stepKernel ; ; scheduleC scheduleC
φ,LR

ks

callKernelH

��
callKernelC

Figure 5.6: Composed refinement diagram.

This extends Figure 5.4 to Figure 5.5, with correspondence indicated by
the double arrow. As correspondence implies refinement, both downgrading
and non-starvation hold for scheduleC, as implied by the arrows. Properties
represented by a single dotted arrow (e.g. downgrading), are preserved by
both refinement (single arrow) and correspondence (double arrow).

Proof Reuse: Composing with seL4

Our argument for the feasibility of this approach rests on the compatibility
of probabilistic correspondence with the non-probabilistic equivalent at the
heart of the L4.verified proof. In Chapter 4, we demonstrated that monadic
specifications, in the style of seL4, can be re-used in a probabilistic setting, au-
tomatically lifting Hoare triples to probabilistic predicate entailment relations.
With the following result we go further, and lift the bulk of the refinement
stack. The predicate corres_underlying in the following lemma is the funda-
mental definition which underlies the refinement results at all levels of the
L4.verified proof. Here, we need only note that this is the form of the top-level
theorem2.

2Briefly, corres_underlying srel nf rrel G G′ mm′ is defined as:

∀(s, s′) ∈ srel. G s∧G′ s′ → (∀(r′, t′) ∈ fst (m′ s′).
∃(r, t) ∈ fst (m s). (t, t′) ∈ srel ∧ rrel r r′ ∧ (nf→ ¬snd (m′ s′)))
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Lemma 10 (Lifting Correspondence): Given correspondence between monadic
programsM andM′, with precondition G and projective state relation φ,

corres_underlying {(s, s ′). s = φ s′} True rrel G (G ◦ φ)MM′

whereM does not fail given G,

no_fail GM

and neither diverges without failing,

empty_failM empty_failM′

and thatM is deterministic on the image of the projection,

∀s. ∃(r, s′).M (φ s) = {(False, (r, s′))}

then we have probabilistic correspondence between their lifted counterparts:

pcorres φ (G ◦ φ) (ExecM) (ExecM′)

Note that the final assumption is exactly the determinism3 condition that
we previously established for scheduleT, restricted to the components of
interest. M is free to behave nondeterministically on components which are
masked by the projection.

We can thus compose our probabilistic results with the deterministic levels
of the L4.verified proof (the executable, or more recent deterministic abstract
specification [Matichuk and Murray, 2012]). For the problem at hand, it is
only necessary to make a few assumptions on the kernel:

Where guardsG andG′ hold on initial states s and s′ satisfying state relation srel, for
any pair of (result, final state) obtained by executingm′, there exists a corresponding
pair obtainable by executing m. If the non-failure flag, nf is set, then the predicate
additionally asserts thatm′ does not fail.

We use the predicate with a projective relation derived from φ, no failure, an
arbitrary result relation, and a concrete guard which is the anti-projection of the
abstract guard (G ◦ φ).

3 Determinism gives us correspondence, rather than just refinement. Consider
monads A and A′, and variable x ∈ N, preserved by projection φA. Let A s be
nondeterministic, giving either sLx := x s + 1M or sLx := x s + 2M, while A′ s is
deterministic, giving sLx := x s+ 2M. All behaviours of A′ are included in A, and thus
corres_underlying holds. However, wp A x = λs. x s+ 1 whereas wp A′ (x ◦ φA) =
λs. x s+ 2: a refinement, but not correspondence. As previously mentioned, if Awere
deterministic then by maximality, this refinement would be correspondence.
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Lemma 11: If the kernel preserves the lottery relation,

{|LR|} stepKernel {|λ_. LR|}

and the current domain,

{|λs. CD s = d|} stepKernel {|λ_ s. CD s = d|}

and is total,

no_fail > stepKernel empty_fail stepKernel

then with the concrete scheduler, it refines the transition scheduler:

scheduleT vLR,φ stepKernel ; ; scheduleC

With this (again using refinement to show correspondence), Figure 5.5 be-
comes Figure 5.6, now including the lifted kernel. The L4.verified refinement
stack is depicted on the left to indicate how the results would compose, to
take our result down to the real, executable kernel. Here callKernelD is the
deterministic refinement of original abstract specification of seL4, callKernelH
is the executable model derived from the Haskell prototype, and callKer-
nelC is the concrete model, comprising the final C and assembly language
implementation

So far, we have only shown that our results are compatible: we do not yet
have a mechanised proof. The remaining results are the first two assumptions
of Lemma 11, which will hold by construction as the existing kernel clearly
cannot modify the additional scheduler state, and the fact that the state relation
is projective: that is, that the abstract state is uniquely recoverable from the
concrete state. This is the intended behaviour of the state relation, and we
have no reason to suspect that this will not hold.

Non-leakage with a Concrete Machine Model

Our ultimate goal is to show the absence of information leakage via shared
state (specifically the processor cache), and so we extend our scheduler with a
simple hardware model. We model a private state per domain (memory), and
a single shared state (cache):

record (sh,pr) machine = private :: dom_id⇒ pr

shared :: sh
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Figure 5.7: A schematic depiction of flow from between domains, via shared
state S.

The action of a domain is modelled by the underspecified function runDom ::

sh× pr⇒ sh× pr, acting on both the current domain’s private state and the
shared state. Only the action of domain ⊥ is specified, and then only on the
shared state, resetting it.

The model exposes the essential information-flow characteristics of the
cache channel, as illustrated by Figure 5.7. Initially, the states associated with
domain 3 (black) and 2 (grey) are isolated. After a single step, domain 3’s
influence propagates to the cache (S), but as yet no other private state has
been affected. It is only after the second step that influence propagates to
2’s private state, it and the cache now being influenced by both 2 and 3’s
initial states. As this mixing of private states cannot occur in less than 2 steps,
and may take an unbounded time (2’s state cannot be influenced until 2 is
scheduled), we cannot formulate a one-step security property. Instead we
have a trace property, enforcing that after any number of steps, the distribution
of outcomes visible to a low observer is independent of any initial high state.

Lemma 12 (Non-leakage): Define functions mask d, which sets the private
state of all domains with clearance not less than that of domain d to some
constant value, and replace d s, which overwrites the private state of dwith
the supplied value, s.

If the clearance of domain h is not entirely contained within that of l,

clearance h * clearance l

then any function of the state after execution, which depends only on elements
within l’s clearance,

Q ◦mask l
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is invariant under modifications to h’s private state (as represented by replace):

wp (runDom ; ; scheduleT)n (Q ◦mask l) =

(wp (runDom ; ; scheduleT)n (Q ◦mask l)) ◦ (replace h p)

This result implies that the distribution of any variable o, visible to l,
is unaffected by changing any variable s, in the private state of h. In the
terminology of Chapter 3, the channel matrix constructed by plotting the
conditional distribution P(o|s) is horizontally uniform. Thus, the Shannon
leakage and the min-leakage are both zero.

This is a form of probabilistic noninterference. Traditional noninterference
[Goguen and Meseguer, 1982], is a security property that states (informally)
that the state visible at a low security level is not affected by actions taken at a
high level (they can replaced by do-nothing operations without changing the
output). This notion of security has been extended to probabilistic systems,
for example by Gray [1990]. What we have shown is very similar to Gray’s
definition of P-restrictiveness, modulo the fact that we are considering only
states of the system, and not transitions, and therefore only condition 2 of
Gray’s definition (Theorem 2) is applicable (presented here using Gray’s
original notation):

σ1 ≈ σ2 =⇒ P(σ1, x,σ′1) = P(σ2, x,σ′1)

This says that any two states (σ1,σ2), which are indistinguishable to a low
observer, transition (x) to any other visible state σ′1 with the same probability.
If we define the equivalence relation ≈ such that it is respected by ‘replace’
(i.e. modifications to any state above l’s clearance are indistinguishable to l),
and ignore the transition label, x (our transitions are not visible), then we have
an equivalent statement.

We also have correspondence between scheduleT and runDom; ;scheduleC:

Lemma 13: Assuming that the lottery relation LR holds, then under pro-
jection ψ, which drops the machine state, we have the correspondence:

pcorres LR ψ scheduleT (runDom ; ; scheduleT)

and thus by compositionality,

pcorres LR (ψ ◦ φ) scheduleT (runDom ; ; scheduleC)
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DOWNGRADING // scheduleS

��

NON-LEAKAGE

��
NON-STARVATION // scheduleT

φ,LR
��

ψ,LR

+3 runDom ;; scheduleT

φ,LR
��

stepKernel ;; scheduleC scheduleC
φ,LR

ks
ψ,LR

+3 runDom ;; scheduleC

Figure 5.8: The complete refinement diagram.

Therefore, finally, we have all three results: downgrading, non-starvation
and non-leakage, on the concrete lottery scheduler composed with the hard-
ware model, as depicted in Figure 5.8. Here, non-leakage is shown using a
double dotted arrow to emphasise that it is only preserved by correspondence,
and not by refinement.

5.3 Ongoing & Future Work

We have established non-starvation in Lemma 7 as a property of finite traces
(of length at least 8). While weaker than this, it would be nice to derive
the standard formulation of non-starvation: that any given domain will
eventually be scheduled, or ∀d. ♦(current_domain = d) in the syntax of
a boolean modal logic. In our case, of course, the result must necessarily be
probabilistic: that it is ’almost certain’ that any domain is eventually sched-
uled. We have already partially mechanised the quantitative temporal logic
qTL, of Morgan and McIver [1999], which allows us to express this result
as ∀d. ♦(current_domain = d)1, with boolean predicates generalised to real-
valued expectations, as for pGCL. We have so far managed to feed our un-
modified pGCL results into qTL, and anticipate that these results will appear
in a future work.

We have not evaluated the performance impact of lattice scheduling in
a real system, which would be a prerequisite for applying this technique
in practice. The costs should be dominated by the effect of cache flushing,
which is reduced relative to a full flush on every context switch. It would be
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interesting to see whether this technique could be used to reduce the cost of
the inter-partition L1 cache flush introduced to support cache colouring, as
described in Section 3.3.

Progress on the assumptions of Lemma 11, required for the connection to
seL4, is ongoing. In a separate work, Daum et al. have shown that the seL4
state relation is indeed projective, satisfying our implicit assumption. Formally
proving the explicit assumptions (lottery relation and current domain preser-
vation) presents no theoretical challenges, simply requiring a large but trivial
proof. Integrating the projectivity result should be similarly straightforward.
The more interesting question is what form that the final top-level statement
should take to cleanly integrate the probabilistic and classical properties of
seL4, and is the subject of ongoing research.

5.4 Related Work

Lattice-based security models are a longstanding idea, motivated largely by
institutional classification policies [DoD], and formally treated by authors
including Denning [1976]. Lattice scheduling, which exploits this structure to
minimise context flushing was presented by Hu [1992a], and was implemented
(as with fuzzy time) in the VAX VMM [Karger et al., 1991].

Lottery scheduling is an established technique for efficient hierarchical
allocation of execution time, introduced by Waldspurger and Weihl [1994].
We use it as an elegant way to implement probabilistic scheduling: we do not
take advantage of hierarchical resource distribution.

Barthe et al. [2012a] present a machine-checked proof (in the Coq theorem
prover) that cache flushing on a context switch eliminates information leakage
via the cache, with respect to a particular cache model. Our result goes further
in two ways: by showing that the number of flushes can be minimised (by
lattice scheduling), and that we can guarantee liveness (by lottery scheduling).
Our hardware model is, however, more simplistic. We also demonstrate that
we can integrate the results of a large existing verification effort [Klein et al.,
2009].

Many authors have analysed the leakage properties of scheduling algo-
rithms themselves [Chen and Malacaria, 2007; Gong et al., 2011; Huisman and
Ngo, 2012], some employing mechanical proof. Most existing analyses focus
on leakage due to the actions of the scheduler itself, or due to the order of
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updates to shared variables. We are specifically concerned with mitigating a
side channel, outside any explicitly shared state. The absence of unintended
channels through explicit mechanisms in seL4, including the scheduler, has
already been established [Murray et al., 2012, 2013].

Large-scale probabilistic verification efforts are still rare, although Fidge
and Shankland [2003] have previously applied pGCL to verifying termination
properties for the IEEE 1394 (Firewire) election protocol. Other authors, such
as Baier and Kwiatkowska [1997] approach the problem of asymptotic fairness
by model-checking formulae in probabilistic temporal logics. By integrating
qTL, we hope to achieve a similar level of automation.

5.5 Summary

We present a hybrid probabilistic lattice-lottery scheduler, which allows ef-
ficient mitigation of the cache channel while simultaneously guaranteeing
non-starvation. Working in pGCL, our system is produced by iterative refine-
ment, supplemented by mechanical proof.

This demonstrates that given adequate tool support (namely Isabelle/HOL
and our mechanisation of pGCL), refinement-driven development and verifi-
cation of realistic probabilistic systems software is no more difficult than the
existing non-probabilistic case. We have shown that our refinement frame-
work is compatible with that of the L4.verified project, and set out the steps
necessary to combine this work with a system such as seL4, giving a mechani-
cal proof down to a real system of probabilistic top-level properties. Above all,
we argue that verifying probabilistic security properties on realistic systems
software is entirely feasible with current technology.





6 Formal Leakage Models

This chapter presents joint work with my former supervisor Will Uther1. The
formal proof of Equation 6.4 is the subject of the following paper:

David Cock. From probabilistic operational semantics to information theory;
side channels in pGCL with isabelle. In Proceedings of the 5th International
Conference on Interactive Theorem Proving, pages 1–15, Vienna, Austria, July

2014. Springer. doi:10.1007/978-3-319-08970-6_12

In this final chapter, we demonstrate that given a high-level probabilistic
model of a system in pGCL, we can formally abstract from operational details,
and reason purely in information-theoretic or probabilistic terms. This pro-
vides a link back to Chapter 2, where we calculated such bounds based on
an intuitive understanding of the system. The purpose of this chapter is to
formalise that intuition.

Specifically, we formally derive leakage bounds for the guessing attack
introduced in Section 2.2. We model the attack as a loop in pGCL with
one iteration per guess, terminating once the secret is found. The principal
result of this chapter, the connection of the concrete attack model to the
general vulnerability bound of Equation 6.4, is fully machine-checked in
Isabelle/HOL.

We continue to take a black-box approach to leakage—We do not assume
the ability to modify (or even inspect) the source code of sensitive components.
We want to provide system-level security guarantees given only a model of
a component’s behaviour. In contrast to the analytic approach of Chapter 2,

1Now at Google Australia
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and the empirical approach of Chapter 3, in this chapter we achieve this with
a refinement-driven approach to specification: results are shown on simple
models, which components are then shown to refine.

We return again to the example password authentication service of Chap-
ter 2, as our canonical example of a system vulnerable to a guessing attack.
Here the secret is the stored password (or hash), and the correct behaviour is
to permit access exactly when the supplied password matches the stored one.
As established, this specification permits intrinsic leakage: Every response
either confirms or eliminates a hypothesis for the adversary. This leakage is
unavoidable: the system cannot do its job unless it is able to deny incorrect
passwords. Again, as established in Section 2.2, an implementation might
furthermore have a response time which depends on the similarity of the
supplied and stored passwords. Here we abstract from the exact nature of
this leakage, and consider it only as a conditional distribution of observation
given secret.

Adaptive Countermeasures We aim to establish measures of leakage to guide
the application and evaluation of adaptive countermeasures. By this, we mean
a system with a variable degree of protection against side-channel leakage,
guided by some adaptive strategy. We assume that our countermeasure can
completely eliminate leakage over some specific channel, albeit at some cost.
Our model for this type of countermeasure is the scheduled message delivery
system presented in Section 3.7.

In the password example, response time is correlated with the secret (the
stored password). As a countermeasure, we might quantise the response time
by delaying any response until the next time satisfying t = k∆t, for integer k.
If the response time is bounded above by tMAX, this limits the space of possible
observations per response to n =

⌈
tMAX
∆t

⌉
. If ∆t > tMAX then n = 1 and the

adversary learns nothing through the channel. This protection comes at a cost:
The system’s latency must increase, as a system’s worst-case execution time is
often orders of magnitude larger than its average.

Given this tradeoff, we have a choice as to how aggressively the counter-
measure is applied. It is important to note that for a secret selected from a
finite set, the chance of compromise is never zero; the adversary always has a
chance of simply guessing the secret, however small. We consider secrets to
be drawn from such a finite (but large) set.
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If a system has some upper bound on its current vulnerability, then it can
ensure security by switching to a completely safe countermeasure (∆t = tMAX

in the above example) as soon as its vulnerability approaches an acceptable
threshold. Ideally, it should be able to apply the countermeasure at partial
strength to achieve any desired level of security. The purpose of these mea-
sures is to guide the system in negotiating this tradeoff.

As a vulnerability measure, we take the k-guess vulnerability of Defini-
tion 2, and show that we can formally derive it from a concrete attack model.
We also formally establish the optimality of the Bayesian attacker introduced
in Section 2.4.

6.1 An Informal Model

As described in Chapter 2, we distinguish between intrinsic leakage, which
occurs unavoidably through the correct behaviour of the system, and side-
channel leakage, which comprises any information that is not required to be
leaked, but is leaked by a specific implementation.

To understand the effect of the side-channel leakage, we compare the
system under consideration to an ideal implementation, and consider the like-
lihood of compromise of each. This approach is practically relevant under our
assumptions for adaptive countermeasures, as any system can be transformed
into an ideal system by fully applying them.

As we have established (for example, in Chapter 3), side-channel leakage
is generally stochastic. At any point, we assume that the adversary has accu-
mulated some list of side-channel observations, o1, . . . ,ot ∈ O, correlated with
the secret, s ∈ S. The prior distribution on secrets, P(s), and the conditional
distribution, P(o|s), of observations given the secret are assumed to be known
to the attacker. We further assume that the observations are conditionally
independent, given the secret. We assume that these distributions are irre-
ducible, that there exist no observable variables permitting factorisation of
either. To the adversary then, the secret is distributed according to the condi-
tional probability given by Bayes’ rule (see Equation 2.8 and the associated
discussion), which we restate here in expanded form:

P(s|o1, . . . ,ot) =
P(o1, . . . ,ot|s)P(s)∑
s P(o1, . . . ,ot|s)P(s)
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We write ∆(S) for the set of distributions on S. We write P(s = s ′), or simply
P(s ′), for the probability that variable s has value s ′. Where probabilities (or
likelihoods) appear as functions, we disambiguate with subscripts: therefore
P(s) = Ps s and P(o|s) = Po|s s o.

In our authentication model, the adversary’s interaction with the system is
limited to guessing possible secrets one at a time, eliciting a yes-or-no answer.
The attacker’s prior knowledge regarding the key is summarised by the distri-
bution P(s). This may represent the combination of initial knowledge (e.g. a
known bias in key selection, such as the Markov model used in Section 2.4)
and previous side-channel observations. The attacker’s model for the side
channel’s dependence on the key is given by P(o|s). We assume that obser-
vations are conditionally independent, that there is no relevant hidden state
beyond the secret, and that observations do not depend on the attacker’s input
(in this respect we have simplified from the strcmp example). The attacker’s
observations are given by the list ol. Initially ol = [ ]. The attacker’s only
relevant knowledge is the two distributions (which are constant) and ol, and
thus its strategy reduces to a function from an observation list to a secret to
guess:

σ :: O∗ → S

We treat the attack as a game, played between the attacker and the system,
with the environment an impartial participant. The players are distinguished
by the treatment of their choices: The system’s choices are predetermined,
the environment’s are random and the attacker’s are demonically nondeter-
ministic (always assumed to be taken to minimise our chance of success, see
Section 4.1). The distinction between random and demonic choice is cru-
cial: The attacker is assumed choose the outcome that maximises its chances,
whereas the environment’s choices are made without consideration of their
effect on the relative positions of the players, being only constrained by their
distribution.

We assume no computational limits on the attacker. For ourselves, how-
ever, while tracking the true security state by iteratively applying Bayes rule
to the distribution P(s|o1, . . . ) gives the most precise vulnerability measure,
doing so is intractable. Instead, we look for a summary measure for the dis-
tribution, from which we can calculate a safe upper bound. For example, we
might track the Shannon entropy remaining in P(s), H(s|o1, . . . ), hoping to
keep it above some threshold. Likewise, we might summarise P(o|s) by the
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conditional entropy, H(o|s) (in some instances the min-entropy H∞(s) may
be a better measure, however). To model this, we allow the functions Ps and
Po|s to range over the sets Qs and Qo|s, respectively. We then ask for the
worst-case vulnerability (strictly, the supremum), noting that as long as these
summary sets contain the true distribution, the vulnerability we calculate is
a safe upper bound. We consider the selection from the summary sets to be
made by the adversary, as it is done to maximise vulnerability. The applicabil-
ity of both Shannon and min-entropy to guessing attacks was established in
Chapter 2.

Finally, we establish our vulnerability measure by selecting a positive
integer, n. The system is considered vulnerable if, at any point, the attacker
has produced the correct secret in no more than n trials. This is, of course, Vn,
per Definition 2.

The game proceeds in stages:

1. The system is instantiated: the adversary selects P(s) and P(o|s) satisfy-
ing Ps ∈ Qs and Po|s ∈ Qo|s. Knowing the system model, the adversary
commits to a strategy σ.

2. The environment randomly selects s according to P(s).

3. The game is played, with the system generating observations, and the
attacker guessing at the secret.

That the adversary commits to a strategy (which secret it will guess for which
set of observations) in step 1, before s is chosen, is crucial, and captures the
restriction that the adversary knows only the distribution on s, and not its
value. Were the adversary’s choice made afterwards, nondeterminism would
allow it to select a strategy with σ [ ] = s. That the game must take this form,
with demonic choice resolved before random choice, is a consequence of the
fact that the two notions of nondeterminism do not commute.

We have informally defined posterior vulnerability for a specific system
trace, under the following assumptions:

• The adversary’s knowledge of the system is given exactly by the distri-
butions P(s) and P(o|s), and the observation list ol.

• Observations are conditionally independent, both of each other and of
the attacker’s actions, given the secret.
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We now formalise this model, and introduce machinery to allows us to
abstract systematically over both notions of nondeterminism, to transform this
posterior vulnerability to prior vulnerability, and thus to bound the likelihood
of compromise for the system.

6.2 A Formal Model

We formalise the above game as a process in pGCL, as presented in Chapter 4.
We first briefly cover the rules for loop verification, which we have so far
avoided, and justify our use of the liberal semantics (wlp).

More pGCL

We first need to cover a few more details of pGCL. As before, the interested
reader is directed to McIver and Morgan [2004] for a fuller treatment.

The following identities for embedded predicates ({0, 1}-valued expecta-
tions) will be useful, and follow from the fact that «P ∧Q» = «P» ∗ «Q»:

«P» ∗ «P» = «P» idempotence

«P» ∗ «¬P» = 0 cancellation

Under the usual (strict) interpretation, the reverse map (expectation trans-
former) is wp, or weakest precondition. On predicates, this gives the weakest
predicate which, if it holds on the initial state, implies that the given post-
condition will hold on the final state. For a post-expectation given as the
embedding of a boolean postcondition, this is the least probability (over all
demonic choices) that the postcondition will hold in the final state, for a given
initial state.

So far this suits us, but a strict interpretation has a problem. Recursion is
defined using the least fixed point. If we attempt to calculate the probability
of success for the defender (that the system remains secure), wp will assign
the least expectation, λs. 0, to a non-terminating program, whereas we should
treat non-termination as success (the attacker in this case never produces the
correct secret). The attacker is certainly free to choose such a strategy, and
under demonic nondeterminism can be assumed to do so.

We might try instead to calculate the probability of success for the attacker
(that the system is compromised), which would give the correct answer for a
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non-terminating attack, but in this case demonic choice will act in the wrong
direction. Demonic choice will minimise this pre-expectation, whereas if we
conflate the demon and the attacker, it should maximise it.

The answer to our dilemma is to instead use the weakest liberal precon-
dition (wlp). This interpretation models partial correctness (correct if termi-
nating), and differs from wp only in its treatment of aborting or otherwise
non-terminating programs, which are considered successful. The definition of
recursion here is as the greatest rather than least fixed point.

There is no syntactic rule for recursion, and of course, no general decision
procedure exists. For our needs, however, the following verification condition
suffices:

Lemma 14 (Partial Correctness for Loops): Define a while loop as follows:

do G→ body od , µx. (body ; ; x) «G»⊕ skip

If I is a probabilistic invariant, such that

«G» ∗ I � wlp body I

then
I � wlp do G→ body od («NG» ∗ I) (6.1)

establishes partial correctness for the loop.

Proof. See McIver and Morgan [2004] Lemma 7.2.2.

Finally, we recall the definition for extended demonic choice:

Definition 6 (Extended Demonic Choice): For countable S, write x :∈S for
x := s1 u x := s2 u . . . , with the following syntactic interpretation:

wp (x :∈S) R = inf
s∈S

R
[
s/x
]

If R, considered as a function S→ R, is nonnegative and bounded, the exis-
tence of this infimum follows from the completeness of the reals.

Noting that this argument does not rely on the countability of S, we extend
our definition to uncountable sets using the same interpretation. There is no
corresponding syntactic intuition in this case. 2

2This definition fails to guarantee continuity, but as we only apply it outside of
recursion, this does not cause difficulty.
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Deriving a Bound on Vulnerability

We now formally define vulnerability, using the victory condition in the above
game. Let ol be the attacker’s current list of observations. We write |l| for the
length of list l, [ ] for the empty list, and l

[
a..b

]
for the contiguous subsequence

of l from index b to a inclusive, counting from the end of the list n.b. for a < b,
l
[
a..b

]
= [ ] and for |l| 6 a and b 6 0, l

[
a..b

]
= l.

The attacker wins if its strategy has produced the correct secret, s, after no
more than n trials (observations):

V = ∃0 6 i 6 n. σ o
[
i..1
]
= s

The complement gives the security predicate:

¬V = ∀0 6 i 6 n. σ o
[
i..1
]
6= s

We embed V as «V»: a {0, 1}-valued function on final states. We interpret this
as the probability that this system has been compromised by a given trace.

We next consider the final step of the game: the attack loop, in which the
attacker collects observations and attempts to guess the secret:

ol := [ ];

do σ.ol 6= s→

o from UNIV atP(o|s);

ol := o:ol

In order to evaluate the weakest pre-expectation of our security predicate
under this attack, we first show the following:

Lemma 15: 3 The expectation,

I =

n∏
i=0

«σ ol
[
i..1
]
6= s» ∗

∑
on,
...,
o|ol|+1

n∏
i=|ol|+1

P(oi|s)«σ (oi: . . . :ol) 6= s»

is a probabilistic wlp invariant for loop guess.

3 See also lemma invariant in guessing_attack/Guessing_Attack.thy.
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Proof. Unfolding wlp applications, we have:

wlp body I = wlp (o from UNIV atP(o|s);ol := o:ol) I

=
∑
o

P(o|s)I
[
o:ol/ol

]

If n 6 |ol| then

I =

n∏
i=0

«σ ol
[
i..1
]
6= s» and thus

wlp body I =
∑
o

P(o|s)

n∏
i=0

«σ (o:ol)
[
i..1
]
6= s» = I

Otherwise, |ol| < n and,

wlp body I

=
∑
o

P(o|s)

(
|ol|+1∏
i=0

«σ (o:ol)
[
i..1
]
6= s»∗

∑
o|ol|+2,
...,
on

n∏
i=|ol|+2

P(oi|s)«σ (oi: . . . :o:ol) 6= s»

)

=
∑
o

(
|ol|∏
i=0

«σ ol
[
i..1
]
6= s» ∗ P(o|s)«σ (o:ol) 6= s»∗

∑
o|ol|+2,
...,
on

n∏
i=|ol|+2

P(oi|s)«σ (oi: . . . :o:ol) 6= s»

)

=

|ol|∏
i=0

«σ ol
[
i..1
]
6= s»

∗
∑
o

∑
o|ol|+2,
...,
on

P(o|s)«σ (o:ol) 6= s»
n∏

i=|ol|+2

P(oi|s)«σ (oi: . . . :o:ol) 6= s»

=

|ol|∏
i=0

«σ ol
[
i..1
]
6= s» ∗

∑
o|ol|+1,
...,
on

n∏
i=|ol|+1

P(oi|s)«σ (oi: . . . :o|ol|+1:ol) 6= s»

= I
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also,

«G» ∗ I = «σ ol 6= s» ∗
|ol|∏
i=0

«σ ol
[
i..1
]
6= s» ∗ . . .

= «σ ol 6= s» ∗ «σ ol 6= s» ∗
|ol|−1∏
i=0

. . .

= I by idempotence

Thus
«G» ∗ I = wlp body I

Applying Equation 6.1 therefore, we have that:

I � wlp


do σ ol 6= s→

o from UNIV atP(o|s);

ol := o:ol

 (
«σ ol = s» ∗ I

)

Unfolding I in the post-expectation we have:

«σ ol = s» ∗ I = «σ ol = s» ∗
n∏
i=0

«σ ol
[
i..1
]
6= s»

∗
∑
o|ol|+1,
...,
on

n∏
i=|ol|+1

P(oi|s)«σ (oi: . . . :ol) 6= s»

Either |ol| 6 n, in which case the left product collapses:

«σ ol = s» ∗ I = «σ ol = s» ∗ «σ ol 6= s» ∗ . . .

= 0 by cancellation

or n < |ol|, in which case the right sum is empty and

«σ ol = s» ∗ I = «σ ol = s» ∗
n∏
i=1

«σ o
[
i..1
]
6= s»

= «σ ol = s» ∗ «∀1 6 i 6 n. σ ol
[
i..1
]
6= s»

� «¬V»
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By the monotonicity of wlp, and prepending the initialisation step, we have:

I
[
[ ]/ol

]
� wlp


ol := [ ];

do σ ol 6= s→

o from UNIV atP(o|s);

ol := o:ol

 «¬V»

Applying the system’s probabilistic choice of secret:

∑
s

(
P(s) ∗ I

[
[ ]/ol

])
=
∑
s∈S

Ps(s) ∗∑
o1,
...,
on

n∏
i=1

P(oi|s)«σ o
[
i..1
]
6= s»



� wlp



s from UNIV atP(s);

ol := [ ];

do σ ol 6= s→

o from UNIV atP(o|s);

ol := o:ol


«¬V» (6.2)

We thus have a lower bound on the likelihood of compromise, from a starting
state specified by the distribution P(s), likelihood function P(o|s), and the
attacker’s strategy, σ. To get to a truly pessimistic bound, we need to abstract
over the latter, considering the worst case over all possible strategies. We first
rewrite Equation 6.2 as follows:

wlp



s from UNIV atP(s);

ol := [ ];

do σ ol 6= s→

o from UNIV atP(o|s);

ol := o:ol


«¬V»

�
∑
s∈S

P(s) ∗∑
o1,
...,
on

n∏
i=0

P(oi|s)«σ ol
[
i..1
]
6= s»



=
∑
s∈S

P(s) ∗∑
o1,
...,
on

P(o1 . . .on|s)
n∏
i=0

«σ ol
[
i..1
]
6= s»

 by independence



154 CHAPTER 6. FORMAL LEAKAGE MODELS

which, as «P» ∗ «Q» = P ∧Q and P(s)P(o|s) = P(o)P(s|o),

=
∑
o1,
...,
on

P(o1 . . .on) ∗
∑

s∈S:
∧n
i=0 ol

[
i..1
]
6=s

P(s|o1 . . .on)



=
∑
o1,
...,
on

P(o1 . . .on) ∗

1 −
∑

s∈S:
∨n
i=0 σ ol

[
i..1
]
=s

P(s|o1 . . .on)




= 1 −
∑
o1,
...,
on

P(o1 . . .on) ∗

X︷ ︸︸ ︷∑
s∈S:

∨n
i=0 σ ol

[
i..1
]
=s

P(s|o1 . . .on)

 (6.3)

We note that if σ ol
[
i..1
]
= σ ol

[
j..1
]

for i 6= j (the strategy repeats), and n 6 |S|,
then a non-repeating strategy may be constructed by iteratively replacing all
repeated guesses with fresh elements of S. Each replacement increases the
number of summands, and since they are non-negative, X least as large as
before. Thus, for any repeating strategy, there exists a non-repeating strategy
that is at least as good. We therefore restrict our attention to non-repeating
strategies.

Given no repeats, the union in Equation 6.3 is disjoint, which thus becomes

1 −
∑
o1,
...,
on

n∑
i=0

P(σ ol
[
i..1
]
,ol
[
n..1

]
)

= 1 −

n∑
i=0

∑
o1,
...,
oi

P(σ ol
[
i..1
]
,ol
[
i..1
]
) by marginalisation

Which is minimised when σ selects according to the incremental maximum-
a-posteriori (MAP) criterion: that is, maximising P(σ ol

[
i..1
]
|o1 . . .oi). Take

one such strategy, labelled σ̂. Maximising vulnerability over strategies is
equivalent to allowing the adversary a demonic choice over strategies, and
then calculating the pre-expectation of the combined process. Together with



6.3. SIMPLER BOUNDS USING REFINEMENT 155

choices over distribution and likelihood, we have:

Vprior = 1 − wlp



Ps ∈ Qs;

Po|s ∈ Qo|s;

σ ∈ O∗ → S;

s from UNIV atP(s);

ol := [ ];

do σ ol 6= s→

o from UNIV atP(o|s);

ol := o:ol



[¬V]

�1 − inf
Ps∈Qs
Po|s∈Qo|s

1 −

n∑
i=0

∑
ol
[
i..1
]P(σ̂ ol[i..1],ol[i..1])

= sup
Ps∈Qs
Po|s∈Qo|s

n∑
i=0

∑
ol
[
i..1
]P(σ̂ ol[i..1],ol[i..1]) (6.4)

The above result is formally verified (for a fixed Ps and Po|s). See theorem
V_prior of guessing_attack/Guessing_Attack.thy in the attached Isabelle
sources.

Note that the optimal attack strategy is the one that maximises P(s,ol),
or the joint probability of the hypothesis (that s is the real secret) and the
observations. This is the MAP (maximum a posteriori) criterion for a Bayesian
attacker. This is the strategy taken by the attacker of Section 2.4, which we
have now shown to be optimal.

6.3 Simpler Bounds using Refinement

The bound in Equation 6.4 is tight, but impractical to apply, as it is essentially
the simulation of an optimal strategy. It serves as the basis, however, for looser
bounds that are more easily computed. We discover a family of bounds, by
exploring the refinement order on attack models.

Recall the definition of refinement from Section 4.1: The standard re-
finement order in pGCL is induced by pointwise comparison of weakest
pre-expectations. Specifically, a program a is refined by a program b, written
a v b, if for all post-expectations E and initial states s, wlp a E s 6 wlp b E s.
For standard post-expectations, those constructed by embedding a predicate,
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e.g. «P», a refinement establishes the postcondition with at least as high a
probability as the original program, by definition.

Our post-expectation is standard, being the embedding of the predicate
‘the system is secure’; Therefore, refinement can only decrease vulnerability,
and abstraction (its converse) can only increase it. The power of this approach
is that we can construct such refinements and abstractions structurally, rather
than reasoning from first principles.

The structural refinement rules that we exploit are:

REFINE_SEQ

a v b

a ; ; c v b ; ; c

REFINE_CHOICE

S ⊆ T

x :∈ T v x :∈S

We apply REFINE_CHOICE to the parameters Qs and Qo|s, to obtain a pa-
rameterised family of attack models, ordered by refinement in the reverse
of the order of inclusion of the set parameters. The resulting ordering on
vulnerability (lower for smaller sets) matches the intuition that reducing the
attacker’s freedom can never increase the worst-case vulnerability.

For convenience, we dispense with the subscripted Vprior, and simply write
V for vulnerability, understanding it to mean prior vulnerability, in the sense
of Equation 6.4. We must, however, introduce new syntax to distinguish our
vulnerability bounds, according to the specialisations on which they rely. We
thus write, for example, Vm

∣∣∣ S to mean Vprior, where Qs = S and n = m,

or Vm
∣∣∣ P(Ps) where Qs = {P′ : P(P′)} i.e. the set of distributions satisfying

predicate P.
The attack models (and hence bounds) form a complete lattice under

the refinement order. The bottom element is the degenerate class of models
(equivalent under refinement), where either Qs or Qo|s is the empty set: In
this case, the relevant supremum in Equation 6.4 is 0. Thus:

Vn

∣∣∣ Qs={}∨Qo|s={} = 0

The top element is again a class, where Qs is the universal set. For any s ∈ S,
this includes the delta distribution assigning all mass to s, whence the attacker
is free to choose a strategy where σ [ ] = s, and thus:

Vn

∣∣∣ Qs=UNIV = 1

The next simplest case is a non-leaking system, where observations are
uncorrelated with secrets. That is, ∀s o. P(s,o) = P(s)P(o). This would be the
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case where no further observations are permitted, for example in the offline
brute-force phase of an attack. We have, writing NL for the independence
condition:

Vn

∣∣∣ P(o,s)=P(o)P(s) = sup
Ps∈Qs
Po|s∈NL

∑
o1,
...,
oi

n∑
i=0

P(ŝi,o1 . . .oi)

= sup
Ps∈Qs
Po|s∈NL

n∑
i=0

∑
o1,
...,
oi

P(o1 . . .oi)P(ŝi)

= sup
Ps∈Qs

n∑
i=0

P(ŝi)

Setting Qs = {P′s}, to consider a known prior distribution, we have,

Vn

∣∣∣∣∣ P(o,s)=P(o)P(s)

{P(s)}
=

n∑
i=0

P′(ŝi) . (6.5)

The probability of compromise by an optimal attacker is simply the sum of
the prior probabilities of the nmost likely secrets. The belief distribution does
not change given observations, given that they are independent of the secret.

For n = 0 we have, even more simply (appealing to the optimality of σ̂),

V0

∣∣∣∣∣ P(o,s)=P(o)P(s)

{P(s)}
= max

s
P′(s) (6.6)

This is exactly the one-guess vulnerability introduced in Equation 2.2.
If we are more ambitious, we can make a less restrictive assumption

regarding the prior distribution by choosing a larger set forQs, while retaining
the assumption of no leakage. We might ask: What is the weakest assumption
(the largest set) that admits the simplification to Equation 6.6? The answer,
Qs = {P ∈ ∆(S) : maxs P(s) 6 X}, for some X ∈ [0, 1], is practically significant
in its connection to the min entropy.

Recall (from Equation 2.11), the definition of min entropy:

H∞(P) , −min
s

log2 P(s)

or equivalently,
max
s
P(s) = 2−H∞(P)
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We can thus rewrite our set equivalently as,

Qs = {P′ ∈ ∆(S) : H∞(P′) 6 H∞(P)} (6.7)

whence Equation 6.6 becomes

V0

∣∣∣∣∣ P′(o,s)=P′(o)P′(s)

H∞(P′)6H∞(P)
= 2−H∞(P)

and for multiple guesses, appealing again to the optimality of σ̂, Equation 6.5
becomes, for n 6 2H∞(P),

Vn

∣∣∣∣∣ P′(o,s)=P′(o)P′(s)

H∞(P′)6H∞(P)
= (n+ 1)2−H∞(P)

which, as noted by Smith [2009], allows us to bound n-guess vulnerability
using one-guess vulnerability, which is generally more tractable. Further, the
bound is tight for n 6 2H∞(P), being attained by any distribution assigning
maximal individual probability 2−H∞P to at least n elements.

The above bounds, assuming zero leakage, are useful in that they give
us a gold standard: The minimum vulnerability that could be attained given
a certain prior distribution (or class of distributions). We wish, however, to
treat systems with leakage, in order to quantify how far the depart from this
ideal. We thus proceed to relax our restriction on Po|s, to account for possible
leakage.

Bounds given leakage will only diverge from the no-leakage case after
the first observation, thus we begin with the next simplest case: n = 1, two
guesses and one observation. Given the distributions P(s) and P(o|s), we
specialise Equation 6.4 to:

V1

∣∣∣∣∣ {Po|s}

{Ps}
= P(ŝ0) +

∑
o

P(ŝ1,o)

We may safely bound this from above by lifting the requirement that ŝ0 and ŝ1

are distinct, giving:

V1

∣∣∣∣∣ {Po|s}

{Ps}
6 max

s
P(s) +

∑
o

max
s
P(o, s)
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The equivalent bounds will, unfortunately, become more and more complex,
and the approximation coarser, as n increases. The number of summands
will increase exponentially (as |O|n), quickly becoming intractable. What we
need is an incremental approach that, given a measure of vulnerability in the
current state, gives a safe (and hopefully tight) bound in the next. What we
really want to bound, therefore, is the change in vulnerability between steps
n and n+ 1. What we need is a notion of leakage that is compatible with our
notion of vulnerability.

First, recall our notation, V0(k), introduced in Section 2.3, for the probabil-
ity of compromise on the kth guess. For k = 1 we have:

V0

∣∣∣∣∣ {Po|s}

{Ps}

(
1
)
= V1

∣∣∣∣∣ {Po|s}

{Ps}
− V0

∣∣∣∣∣ {Po|s}

{Ps}

6
∑
o

max
s
P(o, s)

=
∑
o

max
s
P(o|s)P(s) (6.8)

This bound is tight for any distribution that assigns maximal prior probability
to at least 2 secrets.

This is Smith’s bound [Smith, 2009] on the vulnerability of a probabilistic
program (with s = h and o = l). This bound is tight, but relies on knowing
the full prior distribution, P(s). We obtain more easily applied bounds if we
follow Equation 6.7, and make a more liberal restriction on the distributions.
Again characterising P(s) by its min entropy, we have:

V0

∣∣∣∣∣ {Po|s}

H∞(P)6H

(
1
)
= sup
H∞(Ps)6H

∑
o

max
s
P(o|s)P(s)

If there exists an o′ such that P(o′) is maximal4, defining Ps by

P(s) =

2−H s = argmaxs P(o
′|s)

log2
1−2−H
|S|−1 otherwise

4This is certainly true for observations drawn from a finite set. This bound holds
also for any complete set, bounded above e.g. a real interval. To show this, take a
series of distributions, assigning maximum probability 2−H to consecutive elements
of a series of owhose conditional probability P(o|s) converges on the supremum.
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maximises the sum, giving:

V0

∣∣∣∣∣ {Po|s}

H∞(P)6H

(
1
)
=
∑
o

max
s
P(o|s)2−H

=

(
V0

∣∣∣∣∣ {Po|s}

H∞(P)6H

(
1
))∑

o

max
s
P(o|s)

or

V0(1)
V0(0)

=
∑
o

max
s
P(o|s)

To apply this result for n > 1, we first note that if guess n−1 was unsuccessful,
and the chance that guess n succeeds is V0(n), then the min-entropy in the
distribution P(s|o1 . . .on−1) is, by definition, − log2 V0(n) and thus that by
summarising the (stepwise) prior by its min-entropy, and maximising over all
distributions sharing it, we certainly have an upper bound on V0(n). Thus,

V0(n)

V0(n− 1)
6
∑
o

max
s
P(o|s)

We thus arrive at a multiplicative (log-additive) definition of leakage, the min
leakage of Köpf and Smith [2010]:

ML = log2

∑
o

max
s
P(o|s) (6.9)

We may now bound min-entropy iteratively by:

H∞(n+ 1) > H∞(n) − log2

∑
o

max
s
P(o|s)

We can further simplify the bound (at the cost of reducing precision), by
summarising the likelihood P(o|s) by maxo P(o|s). This may be practically
useful when |O| is large.

ML = log2

∑
o

max
s

(max
o
P(o|s))

= log2|O|max
o,s

P(o|s)

= log2|O|+ log2 max
o,s

P(o|s)

6 log2|O| (6.10)
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Equation 6.10 further implies that in the simple case that P(s) is uniformly
1/|S|,

V=n+1 6
|O|n

|S|

We have thus derived a number of formal bounds on vulnerability, includ-
ing min leakage, from a concrete operational of a guessing attack. This gives
us a formal link back to the bounds we analysed in Chapter 2. We will now
see that once we consider refinement, we can also link together the remaining
bounds, particularly those based on Shannon entropy.

Bounds under Refinement

Defining bounds in this way: prior vulnerability in terms of Ps and change in
vulnerability (leakage) in terms of Po|s is useful both for dynamic evaluation,
and for modularity. Firstly and most simply, given independence of observa-
tions, the security state of an uncompromised system can be summarised by
the distribution P(s|o1, . . . ,oi): the attacker’s belief function. A safe approxi-
mation therefore, is to simply maintain the current value of H∞(s|o1, . . . ,oi),
and update it as every observation occurs.

Secondly, these two distributions act as a specification for the component
to be mitigated. Consider an event-driven system, with two actions: setup
and respond, where setup is responsible for choosing the secret, and respond
for responding to the attacker’s queries, incidentally generating observations.
Then, statements of the form ‘setup chooses secret s with probability at least p’
and ‘given secret s, respond generates observation o with probability at least
p’ are both preserved by (probabilistic) refinement. To see that these imply
our predicates Qs and Qo|s (for a finite secret space), note that for p 6 1/|S|:

∀s. p 6 P(s) ⇒ ∀s. P(s) 6 1 − p(|S|− 1)

⇒ − log2(1 − p(|S|− 1)) 6 H∞(Ps)
Thus we have a bound on min entropy preserved by refinement. A similar
argument gives a bound for ML. Therefore to give an overall bound on
vulnerability, it is necessary only to specify a component by an upper bound
on H∞ and ML.

Finally, this approach applies to any sets Qs and Qo|s. In particular,
we can derive vulnerability bounds for systems (and states) classified by
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their Shannon (H1) or Renyi (Hα) entropies. Recall the definition of Shannon
entropy in Equation 2.10: −

∑
s P(s) log2 P(s). Here, the appropriate definition

of leakage is the mutual information: L1 = I(S;O).

The Renyi entropy is a generalisation of both the Shannon and min en-
tropies, and is defined as: 1/(1−α)

∑
s log2 P(s)

α. The limit as α→ 1 givesH1

and as α→∞ gives H∞. We define the leakage, Lα, as the expected change
in Hα given an observation: Lα = Hα(S) −

∑
o P(o)Hα(S|o).

We bound vulnerability, for sets with bounded H1 or Hα entropy, by
calculating the greatest H∞ entropy for any distribution in the set, and then
proceeding as above. We presented this vulnerability correction (for Shannon
entropy) in Section 2.5. An equivalent relation holds for the class of Renyi
entropies, with the details presented in Appendix A. Even without appealing
to the exact form of these bounds, we can nonetheless place them within
the lattice together with the above min-entropy bounds, ordering the sets by
inclusion, as Figure 6.1 shows for n 6 1.

This lattice represents the ordering on bounds given by safety: f 6 g if
∀x. f x 6 g x i.e. g is a safe upper bound on f. Note that this is also the
definition of refinement in pGCL: this is also the lattice of operational models
(programs of the form given in Equation 6.4), ordered by refinement. We thus
connect the lattice of vulnerability bounds, the channel-based view, with the
refinement lattice, the program-based view. This completes the link from the
formal, mechanised proofs of the last three chapters back to the mathematical
models on which we based our initial analysis.

6.4 Related Work

The guessing-attack model, and the use of min entropy follow from the discus-
sion in Chapter 2, and the related work discussed there is also relevant here.
Capturing malicious (or in our terminology, demonic) behaviour by modelling
a system as an adversarial game is a very common approach, particularly in
controller synthesis. Harris et al. [2013], for example, use a game-based model
to calculate a secure distribution of capabilities in the Capsicum system.

In particular, the simplified bounds that we derive coincide with those
presented by Köpf and Smith [2010]. We arrive at similar results by different
means: Köpf and Smith present their results in terms of a channel matrices
(as we used in both Chapter 2 and Chapter 3), whereas the derivation just
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V1

∣∣∣∣ UNIV

UNIV

��

V1

∣∣∣∣ H∞(Ps)6H∞(P′s)

L∞(Po|s)6L∞(P′o|s)

vv �� ((

V1

∣∣∣∣ H1(Ps)6H1(P
′
s)

L1(Po|s)6L1(P
′
o|s)

��

V1

∣∣∣∣ H∞(Ps)6H∞(P′s)

{Po|s}

��

V1

∣∣∣∣ Hα(Ps)6Hα(P′s)

Lα(Po|s)6Lα(Po|s)

��

V1

∣∣∣∣ H1(Ps)6H1(P
′
s)

{Po|s}

((

V1

∣∣∣∣ Hα(Ps)6Hα(P′s){Po|s}

vv

V1

∣∣∣∣ {Ps}

{Po|s}

��

V1

∣∣∣∣ ∅∅
Figure 6.1: The lattice of bounds.

presented is in terms of refinements (or abstractions) of a concrete process
model. Relating the two allows us to connect the concrete attack model with
the information-theoretic view.

The basic countermeasure model that we analyse is quantisation, which
is consistent with our established principle of reducing the signal (here, the
number of distinct values), rather than increasing noise (as, for example in
fuzzy time [Hu, 1991, 1992b]). A quantisation approach such as this, or that
advocated by [Zhang et al., 2011] is ideally implemented by a lightweight
mechanism such as scheduled delivery, as presented in Chapter 3.

Finally, in contrast with language or security type-based approaches
[Zhang et al., 2012], we treat component-based systems, where a leaking
component is considered only as a black box.
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6.5 Summary

In this final chapter, we have taken one further step from the details of practical
countermeasures, and from system verification, and investigated the kind
of results that we might expect to be able to verify of a practical system.
Remaining within the framework of pGCL, we formalised an operational, or
programmatic model of the guessing attack of Chapter 2, and demonstrated
that from it we can derive the principal bounds that we previously discussed
in information-theoretic terms. This approach thus hints at a bridge between
the process-oriented, semantic, view of leakage, and the channel-oriented,
information-theoretic view. We took advantage of the fact that the guessing-
attack model is not trace-dependent: security can be defined as a predicate on
states, and thus is preserved by refinement, as noted in Section 4.1.

Of particular interest is our rederivation of the notion of min leakage
in Equation 6.9, and the connection between the lattice on bounds, and the
refinement order in pGCL, as expressed in Figure 6.1. The focus of this chapter
was the establishment of sound information-theoretic bounds on leakage, that
will survive refinement via the L4.verified proof stack, down to the level of
real countermeasures, as discussed in Chapter 3 and Chapter 5.

In the preceding three chapters, we have demonstrated that we can build
a chain of machine-checked proofs from a concrete probabilistic model (incor-
porating a large classical specification, such as seL4), all the way to abstract
information-theoretic properties of the system modelled as a noisy channel.
We thus confirm that the high-level approach we present in Chapter 2 can be
linked to a concrete specification, which in turn may apply the countermea-
sures discussed in Chapter 3, or a more context-dependent approach, such as
the lattice scheduler verified in Chapter 5.



7 Conclusion

We have surveyed the challenges of provable protection against information
leakage in component-based systems, and contributed both to the under-
standing of the low-level mechanisms of leakage, and to the verification of
high-level probabilistic properties and countermeasures.

Recognising that while min entropy gives a safe bound on vulnerabil-
ity, we have demonstrated that Shannon entropy can lead to simpler, more
tractable models (Section 2.5). Our proof (Lemma 4) of the maximum vulnera-
bility given Shannon entropy allows such models to be used to safely bound
vulnerability, through a pessimistic correction.

The extensive empirical analysis of Chapter 3 covered two local channels
(cache and bus contention), and one remote (the lucky thirteen attack on
DTLS), and demonstrates the widely varying effectiveness of three mitiga-
tion strategies: cache colouring, instruction-based scheduling and scheduled
delivery.

Cache colouring is generally effective against the cache channel, although
the capacity of residual channels is increasing on modern hardware, and a
more careful implementation is required to avoid compromising artefacts,
many of which are only apparent given a large amount of data.

Instruction-based scheduling, which seeks to prevent the use of the pre-
emption tick as a clock, has decreased dramatically in effectiveness on recent
hardware. On older (circa 2005) ARM processors it is essentially perfect, while
on more recent ARM processors, and on more complex x86 processors it is
largely ineffective, with large residual channels apparent. Although applica-
ble to a wide range of channels (e.g. bus contention), its performance does not
justify the difficulty of attempting to remove all visible clocks.

The Achilles’ heel of both local-channel countermeasures is their reliance
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on unspecified low-level hardware behaviour, which manufacturers are likely
to modify without notice in pursuit of greater performance. It appears that for
genuinely covert-channel-secure systems, partitioned hardware will remain
necessary, although effective mitigation of side-channel leakage, particularly
through the cache appears to be practical (via colouring).

For the remote channel (lucky thirteen), OS-level techniques allow us to
efficiently and effectively mitigate the channel, without requiring any modifi-
cation of the vulnerable code in OpenSSL. In fact, we outperform the constant-
time implementation in the latest version of the library, both for security and
performance. There is no reason that a more careful implementation should
not be able to achieve perfect mitigation at negligible performance cost.

The work presented in Chapter 4 through Chapter 6, demonstrates that
the refinement-style technique used in L4.verified can be extended to handle
probabilistic properties and probabilistic systems, while incorporating existing
proofs. Our formalisation of pGCL in Isabelle/HOL allows us to verify the
lattice-lottery scheduler, as an asymptotically fair countermeasure against the
cache channel. Finally, we formally derive (with machine-checked proof) the
information-theoretic bounds introduced in Chapter 2 from a concrete threat
model: the guessing attack.

We conclude that a significant amount of work remains before we will
be able to formally verify the total absence of timing channels in a system
implemented on commodity hardware. Nevertheless, we have demonstrated
that effective mitigations do exist for some channels, and that there is no
barrier in principle to verifying such stochastic high-level properties.



A Detailed Proofs

This appendix presents the detailed proofs of several results from Chapter 2,
including the extension of the vulnerability divergence result, Lemma 4 of
Section 2.5, to the full class of Rényi entropies [Rényi, 1961], of which the
Shannon entropy is a special case.

Proof of Lemma 1

Let X be a random variable, ranging over the integers [1,n]. For any fixed
y ∈ R, then over all distributions where E(X) = y, E(1/X) is maximised when
all probability mass is assigned either to 1 or to n.

The result is trivial for n 6 2, therefore assume 3 6 n. Fix a distribution
P such that EP(X) = y, and assume that EP(1/X) is maximal among such
distributions. Further assume that for some x ∈ [2,n− 1], P(x) > 0. Let:

α =
n− x

n− 1
β =

x− 1
n− 1

n.b. α+ nβ = x (A.1)

Construct a modified distribution P′ where:

P′(z) =



P(z) + αP(x) z = 1

0 z = x

P(z) + βP(x) z = n

P(z) otherwise

We have redistributed the probability that had been assigned to x between 1
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and n. Calculating EP′(X) we see that

EP′(X) =
∑
z

zP′(z)

= [P(1) + αP(x)] + 0 + [n(P(n) + βP(x))] +
∑

z∈[2,n−1]−x

zP(z)

= αP(x) + nβP(x) +
∑

z∈[1,n]−x

zP(z)

= xP(x) +
∑

z∈[1,n]−x

zP(z) By Equation A.1

= EP(X)

Also,

EP′(1/X) =
∑
z

P′(z)

z

= [P(1) + αP(x)] + 0 +

[
P(n) + βP(x)

n

]
+

∑
z∈[2,n−1]−x

P(z)

z

= (α+
β

n
)P(x) +

∑
z∈[1,n]−x

P(z)

z

> EP(1/X) if α+
β

n
>

1
x

(A.2)

It remains only to show that the inequality in Equation A.2 holds i.e. that we
have strictly increased the value of EP′(1/X):

n+ x < nx as 3 6 n, 2 6 x

∴ (n+ x)(n− x) < nx(n− x) as x < n

∴ (n+ x)(n− x) < nx(n− x) + n− x "

∴ 0 < n2x− nx2 − n2 + x2 + n− x

also

n < n2 as 3 6 n

∴ 0 < n2x− nx as 2 6 x
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and thus

0 <
n2x− nx2 + x2 − x+ n2 − n

n2x− nx

=
n− x

n− 1
+
x− 1
n2 − n

−
1
x

= α+
β

n
−

1
x

finally therefore

α+
β

n
>

1
x

This contradicts the assumption of maximality. Therefore, any distribution
that maximises E(1/X) only assigns probability to 1 and n.

Proof of Lemma 4

Let

Q = {P : H1(P) = H}

be the set of distributions over Xwith Shannon entropyH, and for each P ∈ Q,
take any disjoint partition of X as Y ∪ Z such that

∀y ∈ Y, z ∈ Z. y > z∧ |Y| = n

Then, for H > log2|Y|, P(Y) is maximised over Q at the ‘corner point’,
where ∀y. P(y) = 1/|Y| and ∀z. P(z) = 1/|Z|.

For H < log2|Y|, a solution exists with P(Y) = 1 and P(X) = 0.
The partition of X induces a partition of P:

P(x) =

{
P(Y) ∗ PY(x) x ∈ Y

(1 − P(Y)) ∗ PZ(x) x ∈ Z
where PS(x) =

P(x)

P(S)

Let N = |X|, hence |Z| = N− n. Also, let p = P(Y).
The question is: for a given H and n, what is the largest possible p, over

all choices for P? Or, what is the largest probability we can assign to the n
most likely events, and still achieve overall entropy H?

Note that:

H1(PX) = h(p) + pH1(PY) + (1 − p)H1(PZ) (A.3)
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where

h(p) = −p log2(p) − (1 − p) log2(1 − p) and 0 log2 0 = 0

and that

0 6 H1(PX) 6 log2N

0 6 H1(PY) 6 log2 n

and 0 6 H1(PZ) 6 log2(N− n)

If H 6 log2 n, a solution exists with H(Y) = H, p = 1. Assume now that:

H > log2 n (A.4)

We rewrite equation Equation A.3 as:

H(Z) =
H− h(p)

1 − p
−

p

1 − p
H(Y) (A.5)

For a given p, the solutions form a line in the H(Y)–H(Z) plane with slope
between 0 at p = 0, and −∞ at p = 1. What is the greatest p such that this line
intersects the rectangle (0, 0)–(log2 n, log2(N− n))?

As the slope is uniformly non-positive, a solution exists exactly when one
exists on the line:

H(Y)

log2 n
=

H(Z)

log2(N− n)
(A.6)

Reparameterising and substituting into Equation A.3:

H = h(p) + pk log2 n+ (1 − p)k log2(N− n) (A.7)

k(p) = k =
H− h(p)

p log2 n+ (1 − p) log2(N− n)
(A.8)

We now need the greatest p such that k(p) ∈ [0, 1]. Note that

k(1) =
H

log2(n)
(A.9)

> 1 by Equation A.4 (A.10)

Assume that for some q ∈ [0, 1], k(q) 6 1. As k(1) > 1, by the continuity of
k, there exist finitely many q′ ∈ [q, 1] with k(q′) = 1. Let r be the greatest
such. Again by continuity, @q ′ > q. k(q ′) 6 1. Thus the largest value of p
(r) is found when k(p) = 1 i.e. when H(Y) and H(Z) attain their maximum
values: log2 n and log2(N− n). This occurs only for the uniform distributions
PX(x) =

1
n and PY(y) = 1

N−n .
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Vulnerability given Rènyi Entropy

Definition 7: The Rényi α-entropy of the distribution P over the set X is:

Hα(P) = lim
a→α

(
1

1 − a
log2

∑
x∈X

P(x)a

)

This subsumes both the Shannon entropy, when α = 1, and the min-
entropy, when α =∞. Thus the divergence of H1 is covered by Lemma 4, and
that of H∞ is trivial.

Lemma 16: For α 6= 1, let

Q = {P : Hα(P) = H}

be the set of distributions over X with Renyi α-entropy H, and for each P ∈ Q,
partition X disjointly as Y + Z such that

∀y ∈ Y, z ∈ Z. y > z .

For H > log2|Y|, P(Y) is maximised over Q at the ‘corner point’, where
∀y. P(y) = 1/|Y| and ∀z. P(z) = 1/|Z|.

For H < log2|Y|, a solution exists with P(Y) = 1 and P(X) = 0.

Proof. The proof is analogous to that of Lemma 4.
The partition of X induces a partition of P:

P(x) =

{
p ∗ PY(x) x ∈ Y

(1 − p) ∗ PZ(x) x ∈ Z
where PS(x) =

P(x)

P(S)

Let n = |Y|, N = |X|; hence |Z| = N− n.
Let:

Hα(X) =
1

1 − α
log2

∑
x∈X

P(x)α (A.11)

and define Hα(Y) and Hα(Z) analogously.
Note that

0 6 Hα(X) 6 log2N

0 6 Hα(Y) 6 log2 n

0 6 Hα(Z) 6 log2(N− n)
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Expanding Equation A.11 and rearranging:

Hα(X) =
1

1 − α
log2

∑
y∈Y

[pPY(y)]
α +
∑
z∈Z

[(1 − p)PZ(z)]
α


=

1
1 − α

log2

pα∑
y∈Y

PY(y)
α + (1 − p)α

∑
z∈Z

PZ(z)
α


=

1
1 − α

log2

[
pα2(1−α)Hα(Y) + (1 − p)α2(1−α)Hα(Z)

]
2(1−α)Hα(X) = pα2(1−α)Hα(Y) + (1 − p)α2(1−α)Hα(Z)

As for Shannon entropy, if Hα(X) 6 log2 n, we find a solution with p = 1
and Hα(Y) = Hα(X). Therefore, assume:

Hα(X) > log2 n (A.12)

Let:

A = 2(1−α)Hα(X)

B = 2(1−α)Hα(Y) (A.13)

C = 2(1−α)Hα(Z) (A.14)

For α 6= 1, equations Equation A.13 and Equation A.14 give a continuous,
invertible change of variables. Thus, it is sufficient to solve the following:

A = pαB+ (1 − p)αC (A.15)

As in Equation A.5, we again have a line of negative slope, this time in the
B− C plane.

There are two cases to consider: for α < 1,

n1−α 6 A 6 N1−α

1 6 B 6 n1−α

1 6 C 6 (N− n)1−α

and for α > 1,

N1−α 6 A 6 n1−α

n1−α 6 B 6 1

(N− n)1−α 6 C 6 1
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Again we reparameterise, looking for solutions on the diagonal:

C = pα(1 + k(n1−α − 1)) + (1 − p)α(1 + k((N− n)1−α − 1))

k(p) =
C− pα − (1 − p)α

pα(n1−α − 1) + (1 − p)α((N− n)1−α − 1)
(A.16)

Equation A.16 is continuous for p ∈ [0, 1] and n ∈ [0,N] and N > 2. Also:

k(1) =
C− 1

n1−α − 1

=
2(1−α)Hα(X) − 1
2(1−α)log2n − 1

> 1 by ass. A.12

Thus the solution that maximises p will again be found at the extreme
point of the rectangle, namely B = n1−α, C = (N− n)1−α. Substituting into
Equation A.15 gives:

2(1−α)Hα(X) = pαn1−α + (1 − p)α(N− n)1−α

Hα(X) =
1

1 − α
log2

[
pαn1−α + (1 − p)α(N− n)1−α]





Bibliography

Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the
TLS and DTLS record protocols. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 526–540, San Francisco, CA, May 2013. IEEE.
doi:10.1109/SP.2013.42.

Mário S. Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey
Smith. Measuring information leakage using generalized gain functions. In
Proceedings of the 25th IEEE Computer Security Foundations Symposium, pages
265–279. IEEE, 2012. doi:10.1109/CSF.2012.26.

Miguel E. Andrés, Catuscia Palamidessi, Peter Rossum, and Geoffrey Smith.
Computing the leakage of information-hiding systems. In Javier Esparza
and Rupak Majumdar, editors, Proceedings of the 16th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 6015 of Lecture Notes in Computer Science, pages 373–389. Springer,
2010. doi:10.1007/978-3-642-12002-2_32.

Suguru Arimoto. An algorithm for computing the capacity of arbitrary discrete
memoryless channels. IEEE Transactions on Information Theory, 18(1):14–20,
1972. doi:10.1109/TIT.1972.1054753.

Cortex A9 TRM. Cortex-A9 (revision r3p0) Technical Reference Manual. ARM
Ltd., July 2011.

Ross Arnold and Tim Bell. A corpus for the evaluation of lossless compression
algorithms. In Proceedings of the 1997 Data Compression Conference, pages
201–210. IEEE, 1997. doi:10.1109/DCC.1997.582019.

Aslan Askarov, Andrew C. Myers, and Danfeng Zhang. Predictive black-box
mitigation of timing channels. In Proceedings of the 17th ACM Conference
on Computer and Communications Security, pages 520–538, Chicago, Illinois,
USA, 2010. ACM. doi:10.1145/1866307.1866341.

175

http://dx.doi.org/10.1109/SP.2013.42
http://dx.doi.org/10.1109/CSF.2012.26
http://dx.doi.org/10.1007/978-3-642-12002-2_32
http://dx.doi.org/10.1109/TIT.1972.1054753
http://dx.doi.org/10.1109/DCC.1997.582019
http://dx.doi.org/10.1145/1866307.1866341


176 BIBLIOGRAPHY

Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determi-
nating timing channels in compute clouds. In Proceedings of the 2010 ACM
Workshop on Cloud Computing Security, pages 103–108, Chicago, Illinois, USA,
2010a. ACM. doi:10.1145/1866835.1866854.

Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation, Vancouver, BC, 2010b.
USENIX.

Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, and
Caroline Sporleder. Acoustic side-channel attacks on printers. In Proceedings
of the 19th USENIX Security Symposium, pages 1–16, Washington, DC, 2010.
USENIX.

Christel Baier and Marta Kwiatkowska. Automatic verification of liveness
properties of randomized systems. In Proceedings of the 16th ACM Symposium
on Principles of Distributed Computing, page 295. ACM, 1997. doi:10.1145/
259380.259527.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 90–101, Savannah, GA, USA, 2009. ACM. doi:10.1145/1480881.

1480894. URL http://doi.acm.org/10.1145/1480881.1480894.

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer. In
Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841
of Lecture Notes in Computer Science, pages 71–90. Springer Berlin Heidelberg,
2011. ISBN 978-3-642-22791-2. doi:10.1007/978-3-642-22792-9_5. URL
http://dx.doi.org/10.1007/978-3-642-22792-9_5.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Cache-
leakage resilient OS isolation in an idealized model of virtualization. In
Proceedings of the 25th IEEE Computer Security Foundations Symposium, pages
186–197. IEEE, 2012a. doi:10.1109/CSF.2012.17.

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.
Probabilistic relational reasoning for differential privacy. In Proceedings of the

http://dx.doi.org/10.1145/1866835.1866854
http://dx.doi.org/10.1145/259380.259527
http://dx.doi.org/10.1145/259380.259527
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1145/1480881.1480894
http://doi.acm.org/10.1145/1480881.1480894
http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1109/CSF.2012.17


BIBLIOGRAPHY 177

39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 97–110, Philadelphia, PA, USA, 2012b. ACM. doi:10.1145/
2103656.2103670. URL http://doi.acm.org/10.1145/2103656.2103670.

Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited – an
Isabelle/Isar experience. In Proceedings of the 14th International Conference on
Theorem Proving in Higher Order Logics, pages 75–90. Springer, 2001.

Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. Deterministic
process groups in dOS. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, pages 1–16, Vancouver, BC,
Canada, 2010. USENIX.

Richard E. Blahut. Computation of channel capacity and rate-distortion
functions. IEEE Transactions on Information Theory, 18:460–473, 1972. doi:
10.1.1.133.7174.

Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
Quantitative notions of leakage for one-try attacks. Electronic Notes in
Theoretical Computer Science, 249:75–91, August 2009. doi:10.1016/j.entcs.
2009.07.085.

David Brumley and Dan Boneh. Remote timing attacks are practical. In
Proceedings of the 12th USENIX Security Symposium, pages 1–14, Washington,
DC, USA, 2003. USENIX. doi:10.1016/j.comnet.2005.01.010.

Lewis Carroll. Alice’s Adventures in Wonderland. Macmillan, November 1865.

Han Chen and Pasquale Malacaria. Quantitative analysis of leakage for multi-
threaded programs. In Proceedings of the 2007 ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, pages 31–40, San Diego,
California, USA, 2007. ACM. doi:10.1145/1255329.1255335.

Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in infor-
mation flow. In Proceedings of the 18th IEEE Computer Security Foundations
Workshop, pages 31–45. IEEE, June 2005. doi:10.1109/CSFW.2005.10.

Aaron R. Coble. Anonymity, information, and machine-assisted proof. PhD thesis,
University of Cambridge, Computer Laboratory, 2010.

http://dx.doi.org/10.1145/2103656.2103670
http://dx.doi.org/10.1145/2103656.2103670
http://doi.acm.org/10.1145/2103656.2103670
http://dx.doi.org/10.1.1.133.7174
http://dx.doi.org/10.1.1.133.7174
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1016/j.comnet.2005.01.010
http://dx.doi.org/10.1145/1255329.1255335
http://dx.doi.org/10.1109/CSFW.2005.10


178 BIBLIOGRAPHY

David Cock. Bitfields and tagged unions in C: Verification through automatic
generation. In Bernhard Beckert and Gerwin Klein, editors, Proceedings of
the 5th International Verification Workshop, volume 372 of CEUR Workshop
Proceedings, pages 44–55, Sydney, Australia, August 2008.

David Cock. Lyrebird – assigning meanings to machines. In Gerwin Klein, Ralf
Huuck, and Bastian Schlich, editors, Proceedings of the 5th Systems Software
Verification, pages 1–9, Vancouver, Canada, October 2010. USENIX.

David Cock. Exploitation as an inference problem. In Proceedings of the 4th
ACM Workshop on Artificial Intelligence and Security, pages 105–106, Chicago,
IL, USA, October 2011. ACM. doi:10.1145/2046684.2046702.

David Cock. Verifying probabilistic correctness in Isabelle with pGCL. In Pro-
ceedings of the 7th Systems Software Verification, pages 1–10, Sydney, Australia,
November 2012. Electronic Proceedings in Theoretical Computer Science.
doi:10.4204/EPTCS.102.15.

David Cock. Practical probability: Applying pGCL to lattice schedul-
ing. In Proceedings of the 4th International Conference on Interactive Theorem
Proving, pages 1–16, Rennes, France, July 2013. Springer. doi:10.1007/

978-3-642-39634-2_23.

David Cock. From probabilistic operational semantics to information theory;
side channels in pGCL with isabelle. In Proceedings of the 5th International
Conference on Interactive Theorem Proving, pages 1–15, Vienna, Austria, July
2014. Springer. doi:10.1007/978-3-319-08970-6_12.

David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state
monads and scalable refinement. In Otmane Ait Mohamed, César Mu noz,
and Sofiène Tahar, editors, Proceedings of the 21st International Conference on
Theorem Proving in Higher Order Logics, pages 167–182, Montreal, Canada,
August 2008. Springer. doi:10.1007/978-3-540-71067-7_16.

David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last mile; an
empirical study of timing channels on sel4. In Proceedings of the 21st ACM
Conference on Computer and Communications Security, pages 1–12, Scottsdale,
USA, November 2014. ACM. doi:10.1145/2660267.2660294. (to appear).

http://dx.doi.org/10.1145/2046684.2046702
http://dx.doi.org/10.4204/EPTCS.102.15
http://dx.doi.org/10.1007/978-3-642-39634-2_23
http://dx.doi.org/10.1007/978-3-642-39634-2_23
http://dx.doi.org/10.1007/978-3-319-08970-6_12
http://dx.doi.org/10.1007/978-3-540-71067-7_16
http://dx.doi.org/10.1145/2660267.2660294


BIBLIOGRAPHY 179

Cryptome. How old is TEMPEST?, 2002. URL http://cryptome.org/

tempest-old.htm. Accessed 11 March 2014.

Matthias Daum, Nelson Billing, and Gerwin Klein. Concerned with the un-
privileged: User programs in kernel refinement. Formal Aspects of Computing.
doi:10.1007/s00165-014-0296-9. (to appear).

Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. Password strength:
An empirical analysis. In Proceedings of the 30th IEEE INFOCOM, pages 1–9.
IEEE, 2010. doi:10.1109/INFCOM.2010.5461951.

Dorothy. E. Denning. A lattice model of secure information flow. Communica-
tions of the ACM, 19:236–242, 1976. doi:10.1145/360051.360056.

Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel
M. T. Chakravarty. Running the manual: An approach to high-assurance
microkernel development. In Proceedings of the ACM SIGPLAN Haskell Work-
shop, Portland, OR, USA, September 2006. ACM. doi:10.1145/1159842.

1159850.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453–457, August 1975.
doi:10.1145/360933.360975.

Adam Dunkels. Minimal TCP/IP implementation with proxy support. Tech-
nical Report T2001-20, SICS, 26, 2001. http://www.sics.se/~adam/thesis.
pdf.

Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified pro-
tection model of the seL4 microkernel. In Jim Woodcock and Natarajan
Shankar, editors, Proceedings of Verified Software: Theories, Tools and Experi-
ments 2008, volume 5295 of Lecture Notes in Computer Science, pages 99–114,
Toronto, Canada, October 2008. Springer.

Barbara Espinoza and Geoffrey Smith. Min-entropy leakage of channels
in cascade. In Gilles Barthe, Anupam Datta, and Sandro Etalle, editors,
Proceedings of the 10th International Workshop on Formal Aspect of Security and
Trust (FAST), volume 7140 of Lecture Notes in Computer Science, pages 70–84.
Springer, 2012. doi:10.1007/978-3-642-29420-4_5.

http://cryptome.org/tempest-old.htm
http://cryptome.org/tempest-old.htm
http://dx.doi.org/10.1007/s00165-014-0296-9
http://dx.doi.org/10.1109/INFCOM.2010.5461951
http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1145/1159842.1159850
http://dx.doi.org/10.1145/1159842.1159850
http://dx.doi.org/10.1145/360933.360975
http://www.sics.se/~adam/thesis.pdf
http://www.sics.se/~adam/thesis.pdf
http://dx.doi.org/10.1007/978-3-642-29420-4_5


180 BIBLIOGRAPHY

Barbara Espinoza and Geoffrey Smith. Min-entropy as a resource. Information
and Computation, 226:57–75, 2013. doi:10.1016/j.ic.2013.03.005.

Colin Fidge and Carron Shankland. But what if i don’t want to wait for-
ever? Formal Aspects of Computing, 14:281–294, 2003. doi:10.1007/

s001650300006.

Bryan Ford. Plugging side-channel leaks with timing information flow control.
In Proceedings of the 4th USENIX Workschop on Hot Topics in Cloud Computing,
pages 1–5, Boston, MA, 2012. USENIX.

Richard Gay, Heiko Mantel, and Henning Sudbrock. Empirical bandwidth
analysis of interrupt-related covert channels. In Proceedings of the 2nd In-
ternational Workshop on Quantitative Aspects in Security Assurance, London,
September 2013.

Michael Godfrey. On the prevention of cache-based side-channel attacks in a
cloud environment. Master’s thesis, Queen’s University, Ontario, Canada,
September 2013. doi:1974/8320.

Joseph Goguen and José Meseguer. Security policies and security models.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 11–20,
Oakland, California, USA, April 1982. IEEE Computer Society.

Xun Gong, Negar Kiyavash, and Parv Venkitasubramaniam. Information
theoretic analysis of side channel information leakage in FCFS schedulers.
In Proceedings of the 2011 IEEE International Symposium on Information Theory,
pages 1255–1259. IEEE, August 2011. doi:10.1109/ISIT.2011.6033737.

James W. Gray. Probabilistic interference. In Proceedings of the 1990 IEEE
Computer Society Symposium on Research in Security and Privacy, pages 170–
179, May 1990. doi:10.1109/RISP.1990.63848.

James W. Gray. On introducing noise into the bus-contention channel. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 90–98. IEEE
Computer Society, 1993. doi:10.1109/RISP.1993.287640.

James W. Gray. Countermeasures and tradeoffs for a class of covert timing
channels. Technical Report HKUST-CS94-18, Hong Kong University of
Science and Technology, 1994. doi:1783.1/25.

http://dx.doi.org/10.1016/j.ic.2013.03.005
http://dx.doi.org/10.1007/s001650300006
http://dx.doi.org/10.1007/s001650300006
http://dx.doi.org/1974/8320
http://dx.doi.org/10.1109/ISIT.2011.6033737
http://dx.doi.org/10.1109/RISP.1990.63848
http://dx.doi.org/10.1109/RISP.1993.287640
http://dx.doi.org/1783.1/25


BIBLIOGRAPHY 181

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. Operational
versus weakest pre-expectation semantics for the probabilistic guarded
command language. Performance Evaluation, 73(0):110–132, 2014. doi:10.
1016/j.peva.2013.11.004.

David Greve and Matthew Wilding. Evaluatable, high-assurance microproces-
sors. In Proceedings of the 2nd Annual High-Confidence Software and Systems
Conference, Annapolis, MD, USA, 2002.

W.R. Harris, S. Jha, T. Reps, J. Anderson, and R.N.M. Watson. Declarative,
temporal, and practical programming with capabilities. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 18–32, May 2013.
doi:10.1109/SP.2013.11.

William L. Harrison and Richard B. Kieburtz. The logic of demand in Haskell.
Journal of Functional Programming, 15(6):837–891, November 2005. doi:

10.1017/S0956796805005666.

Johannes Hölzl and Tobias Nipkow. Verifying pCTL model checking. In
Cormac Flanagan and Barbara König, editors, Proceedings of the 18th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 7214 of Lecture Notes in Computer Science, pages
347–361. Springer, 2012. doi:10.1007/978-3-642-28756-5_24.

Wei-Ming Hu. Reducing timing channels with fuzzy time. In Proceedings of
the 1991 IEEE Computer Society Symposium on Research in Security and Privacy,
pages 8–20. IEEE Computer Society, 1991. doi:10.1109/RISP.1991.130768.

Wei-Ming Hu. Lattice scheduling and covert channels. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 52–61. IEEE, 1992a.
doi:10.1109/RISP.1992.213271.

Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of Computer
Security, 1(3–4), January 1992b. doi:10.3233/JCS-1992-13-404.

Brian Huffman. Formal verification of monad transformers. In Proceedings
of the 17th International Conference on Functional Programming, pages 15–16,
Copenhagen, Denmark, 2012. ACM. doi:10.1145/2364527.2364532.

http://dx.doi.org/10.1016/j.peva.2013.11.004
http://dx.doi.org/10.1016/j.peva.2013.11.004
http://dx.doi.org/10.1109/SP.2013.11
http://dx.doi.org/10.1017/S0956796805005666
http://dx.doi.org/10.1017/S0956796805005666
http://dx.doi.org/10.1007/978-3-642-28756-5_24
http://dx.doi.org/10.1109/RISP.1991.130768
http://dx.doi.org/10.1109/RISP.1992.213271
http://dx.doi.org/10.3233/JCS-1992-13-404
http://dx.doi.org/10.1145/2364527.2364532


182 BIBLIOGRAPHY

Marieke Huisman and Tri Minh Ngo. Scheduler-specific confidentiality
for multi-threaded programs and its logic-based verification. In Proceed-
ings of the 2011 International Conference on Formal Verification of Object-
Oriented Software, pages 178–195, Turin, Italy, 2012. Springer. doi:10.1007/
978-3-642-31762-0_12.

Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded
commands mechanized in HOL. Theoretical Computer Science, 346(1):96 –
112, 2005. doi:10.1016/j.tcs.2005.08.005.

Intel 64 & IA-32 AORM. Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation, April 2012.

Paul A. Karger and John C. Wray. Storage channels in disk arm optimization.
In Proceedings of the 1991 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 52–61. IEEE Computer Society, May 1991.
doi:10.1109/RISP.1991.130771.

Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,
and Clifford E. Kahn. A retrospective on the VAX VMM security kernel.
IEEE Transactions on Software Engineering, 17(11):1147–1165, November 1991.
doi:10.1109/32.106971.

Richard A. Kemmerer. Shared resource matrix methodology: an approach
to identifying storage and timing channels. ACM Transactions on Computer
Systems, 1(3):256–277, August 1983. doi:10.1145/357369.357374.

Richard A. Kemmerer. A practical approach to identifying storage and timing
channels: twenty years later. In Proceedings of the 19th Annual Computer
Security Applications Conference (ACSAC), pages 109–118. IEEE, December
2002. doi:10.1109/CSAC.2002.1176284.

Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM: system-
level protection against cache-based side channel attacks in the cloud. In
Proceedings of the 21st USENIX Security Symposium, pages 189–204, Bellevue,
WA, USA, August 2012. USENIX.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:

http://dx.doi.org/10.1007/978-3-642-31762-0_12
http://dx.doi.org/10.1007/978-3-642-31762-0_12
http://dx.doi.org/10.1016/j.tcs.2005.08.005
http://dx.doi.org/10.1109/RISP.1991.130771
http://dx.doi.org/10.1109/32.106971
http://dx.doi.org/10.1145/357369.357374
http://dx.doi.org/10.1109/CSAC.2002.1176284


BIBLIOGRAPHY 183

Formal verification of an OS kernel. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles, pages 207–220, Big Sky, MT, USA,
October 2009. ACM. doi:10.1145/1629575.1629596.

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal verification of an operating system kernel. Communications of the
ACM, 53(6):107–115, June 2010. doi:10.1145/1743546.1743574.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal verifi-
cation of an OS microkernel. ACM Transactions on Computer Systems, 32(1):
2:1–2:70, February 2014. doi:10.1145/2560537.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.
doi:10.1007/3-540-48405-1_25.

Boris Köpf and David Basin. An information-theoretic model for adaptive
side-channel attacks. In Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 286–296, Alexandria, Virginia, USA,
2007. ACM. doi:10.1145/1315245.1315282.

Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage resilience
of blinded cryptography under timing attacks. In Proceedings of the 23rd
IEEE Computer Security Foundations Symposium, pages 44–56, Washington,
DC, USA, 2010. IEEE Computer Society. doi:10.1109/CSF.2010.11.

Dexter Kozen. A probabilistic PDL. Journal of Computer and System Sciences, 30
(2):162–178, 1985. doi:10.1016/0022-0000(85)90012-1.

Butler W. Lampson. A note on the confinement problem. Communications of
the ACM, 16:613–615, 1973. doi:10.1145/362375.362389.

Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-controlled cache
predictability for real-time systems. In Proceedings of the 3rd IEEE Real-Time
Technology and Applications Symposium (RTAS), Montreal, Canada, June 1997.
IEEE. doi:10.1109/RTTAS.1997.601360.

http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/1743546.1743574
http://dx.doi.org/10.1145/2560537
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1145/1315245.1315282
http://dx.doi.org/10.1109/CSF.2010.11
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1145/362375.362389
http://dx.doi.org/10.1109/RTTAS.1997.601360


184 BIBLIOGRAPHY

Steven. B. Lipner. A comment on the confinement problem. In Proceedings
of the 5th ACM Symposium on Operating Systems Principles, pages 192–196.
ACM, 1975. doi:10.1145/800213.806537.

David Malone and Kevin Maher. Investigating the distribution of password
choices. In Proceedings of the 21st international conference on World Wide Web,
WWW ’12, pages 301–310, Lyon, France, 2012. ACM. doi:10.1145/2187836.
2187878.

James L. Massey. Guessing and entropy. In Proceedings of the 1994 IEEE
International Symposium on Information Theory, page 204. IEEE, June 1994.
doi:10.1109/ISIT.1994.394764.

Daniel Matichuk and Toby Murray. Extensible specifications for automatic
re-use of specifications and proofs. In Proceedings of the 10th International Con-
ference on Software Engineering and Formal Methods, pages 1–8, Thessaloniki,
Greece, December 2012. Springer. doi:10.1007/978-3-642-33826-7_23.

Annabelle McIver and Carroll Morgan. Partial correctness for probabilistic
demonic programs. Theoretical Computer Science, 266(1-2):513 – 541, 2001.
doi:10.1016/S0304-3975(00)00208-5.

Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Springer, 2004. ISBN 978-0-387-40115-7. doi:

10.1007/b138392.

Carroll Morgan and Annabelle K. McIver. An expectation-based model for
probabilistic temporal logic. Logic Journal of the IGPL, 7:779–804, 1999.
doi:10.1093/jigpal/7.6.779.

Carroll Morgan, Annabelle McIver, Geoffrey Smith, Barbara Espinoza, and
Larisa Meinicke. Abstract channels and their robust information-leakage
ordering. In Principles of Security and Trust (ETAPS), pages 83–102, Grenoble,
France, April 2014.

Till Mossakowski, Lutz Schröder, and Sergey Goncharov. A generic complete
dynamic logic for reasoning about purity and effects. Formal Aspects of
Computing, 22(3-4):363–384, May 2010. doi:10.1007/s00165-010-0153-4.

Steven J. Murdoch. Hot or not: revealing hidden services by their clock skew.
In Proceedings of the 13th ACM Conference on Computer and Communications

http://dx.doi.org/10.1145/800213.806537
http://dx.doi.org/10.1145/2187836.2187878
http://dx.doi.org/10.1145/2187836.2187878
http://dx.doi.org/10.1109/ISIT.1994.394764
http://dx.doi.org/10.1007/978-3-642-33826-7_23
http://dx.doi.org/10.1016/S0304-3975(00)00208-5
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1093/jigpal/7.6.779
http://dx.doi.org/10.1007/s00165-010-0153-4


BIBLIOGRAPHY 185

Security, pages 27–36, Alexandria, Virginia, USA, 2006. ACM. doi:10.1145/
1180405.1180410.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Gerwin
Klein. Noninterference for operating system kernels. In Chris Hawblitzel
and Dale Miller, editors, Proceedings of the 2nd International Conference on
Certified Programs and Proofs, volume 7679 of Lecture Notes in Computer
Science, pages 126–142, Kyoto, Japan, December 2012. Springer. doi:10.

1007/978-3-642-35308-6_12.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from
general purpose to a proof of information flow enforcement. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 415–429, San Francisco,
CA, USA, May 2013. IEEE. doi:10.1109/SP.2013.35.

Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer,
2002. doi:10.1007/978-94-010-0413-8_11.

Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002. ISBN 978-3-540-43376-7. doi:10.1007/

3-540-45949-9.

NSA. TEMPEST: A signal problem. Cryptologic Spectrum, September 1972.
Declassified 2007.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, pages
547–561, 1961.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 199–212, Chicago, IL, USA, 2009. ACM.
doi:10.1145/1653662.1653687.

Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, 21:120–126, 1978. doi:10.1145/359340.359342.

http://dx.doi.org/10.1145/1180405.1180410
http://dx.doi.org/10.1145/1180405.1180410
http://dx.doi.org/10.1007/978-3-642-35308-6_12
http://dx.doi.org/10.1007/978-3-642-35308-6_12
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1007/978-94-010-0413-8_11
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1145/1653662.1653687
http://dx.doi.org/10.1145/359340.359342


186 BIBLIOGRAPHY

Marvin Schaefer, Barry Gold, Richard Linde, and John Scheid. Program
confinement in KVM/370. In Proceedings of the 5th ACM Computer Science
Conference, pages 404–410, Atlanta, GA, USA, 1977. ACM. doi:10.1145/

800179.1124633.

Steve Selvin. A problem in probability (letter to the editor). American Statisti-
cian, 29(1):67, February 1975.

Claude E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 1948. doi:10.1145/584091.584093. Reprinted in
SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55,
2001.

Olin Sibert, Phillip A Porras, and Robert Lindell. The Intel 80x86 processor
architecture: Pitfalls for secure systems. In Proceedings of the IEEE Symposium
on Security and Privacy. IEEE, 1995. doi:10.1.1.17.5041.

Geoffrey Smith. On the foundations of quantitative information flow. In
Proceedings of the 12th International Conference on Foundations of Software
Science and Computational Structures, pages 288–302, York, UK, 2009. Springer.
doi:10.1007/978-3-642-00596-1_21.

Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Ale-
jandro Russo, and David Mazières. Eliminating cache-based timing at-
tacks with instruction-based scheduling. In Proceedings of the 18th European
Symposium On Research in Computer Security, pages 718–735, Egham, UK,
September 2013. Springer. doi:10.1007/978-3-642-40203-6_40.

David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing shared
L2 caches on multicore systems in software. In Proceedings of the 3rd Workshop
on the Interaction between Operating Systems and Computer Architecture, San
Diego, CA, USA, June 2007.

Jonathan T. Trostle. Modelling a fuzzy time system. In Proceedings of the 1993
IEEE Computer Society Symposium on Research in Security and Privacy, pages
82–89. IEEE Computer Society, 1993. doi:10.1109/RISP.1993.287641.

DoD. Trusted Computer System Evaluation Criteria. US Department of Defence,
1986. DoD 5200.28-STD.

http://dx.doi.org/10.1145/800179.1124633
http://dx.doi.org/10.1145/800179.1124633
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1.1.17.5041
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-40203-6_40
http://dx.doi.org/10.1109/RISP.1993.287641


BIBLIOGRAPHY 187

NIST. Common Criteria for IT Security Evaluation. US National Institute of
Standards, 1999. ISO Standard 15408. http://csrc.nist.gov/cc/.

Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementation, pages 1–11,
Monterey, CA, USA, November 1994. USENIX.

Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H.
Anderson. Making shared caches more predictable on multicore platforms.
In Proceedings of the 25th Euromicro Conference on Real-Time Systems, pages
157–167, Paris, France, July 2013. doi:10.1109/ECRTS.2013.26.

Chelsea C. White and Douglas J. White. Markov decision processes. Eu-
ropean Journal of Operational Research, 39(1):1–16, 1989. doi:10.1016/

0377-2217(89)90348-2.

Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David
Cock, and Michael Norrish. Mind the gap: A verification framework for
low-level C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in
Computer Science, pages 500–515, Munich, Germany, August 2009. Springer.
doi:10.1007/978-3-642-03359-9_34.

John C. Wray. An analysis of covert timing channels. In Proceedings of the 1991
IEEE Computer Society Symposium on Research in Security and Privacy, pages
2–7. IEEE, May 1991. doi:10.1109/RISP.1991.130767.

Yaming Yu. Squeezing the Arimoto-Blahut algorithm for faster convergence.
IEEE Transactions on Information Theory, 56(7):3149–3157, 2010. doi:10.1109/
TIT.2010.2048452.

Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mitigation
of timing channels in interactive systems. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, pages 563–574, Chicago,
IL, USA, 2011. ACM. doi:10.1145/2046707.2046772.

Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based
control and mitigation of timing channels. In Proceedings of the 2012 ACM

http://csrc.nist.gov/cc/
http://dx.doi.org/10.1109/ECRTS.2013.26
http://dx.doi.org/10.1016/0377-2217(89)90348-2
http://dx.doi.org/10.1016/0377-2217(89)90348-2
http://dx.doi.org/10.1007/978-3-642-03359-9_34
http://dx.doi.org/10.1109/RISP.1991.130767
http://dx.doi.org/10.1109/TIT.2010.2048452
http://dx.doi.org/10.1109/TIT.2010.2048452
http://dx.doi.org/10.1145/2046707.2046772


188 BIBLIOGRAPHY

SIGPLAN Conference on Programming Language Design and Implementation,
pages 99–110, Beijing, China, 2012. ACM. doi:10.1145/2254064.2254078.

Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen. Side-
buster: Automated detection and quantification of side-channel leaks in
web application development. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, pages 595–606, New York, NY, USA,
2010. ACM. doi:10.1145/1866307.1866374.

http://dx.doi.org/10.1145/2254064.2254078
http://dx.doi.org/10.1145/1866307.1866374

	Originality Statement
	Copyright Statement
	Authenticity Statement
	Contents
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Covert and Side Channels
	Background
	The strcmp Channel
	Leakage with a Uniform Prior
	Leakage with a Nonuniform Prior
	Reevaluating Shannon Entropy
	Noisy Channels & Information Theory
	A Safe Leakage Model for strcmp
	Related Work
	Summary

	Case Study: Practical Countermeasures
	Experimental Setup
	The Local Channels
	Cache Colouring
	Noise versus Determinism
	Instruction-Based Scheduling
	Lucky thirteen as a Remote Channel
	Scheduled Message Delivery
	Related Work
	Conclusions

	pGCL for Systems
	The Case for Probabilistic Correctness
	The pGCL Language
	The pGCL Theory Package
	Implementation and Extensions
	Related Work
	Summary

	Case Study: Lattice Scheduling
	Security Policies and Covert Channels
	Countermeasures through Refinement
	Ongoing & Future Work
	Related Work
	Summary

	Formal Leakage Models
	An Informal Model
	A Formal Model
	Simpler Bounds using Refinement
	Related Work
	Summary

	Conclusion
	Detailed Proofs
	Bibliography

