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FPGAs as Tools and Architectures
at ETH Systems

Real-Time Tracing and Verification
 The FPGA as a tool.
 Analysing a multi-Gb trace stream in real time.

BRISC – Research Architecture for Large Systems
 The FPGA as an architecture.
 A platform for hardware and software research.
 Expose the coherent interface to an FPGA, with lots and 

lots of fast IO links.
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Real-Time Tracing and Verification
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Collide instructions at 0.99c, and observe the decay products.

We're Going to Build a Large Program Collider

Images: CERN; Chaix & Morel et associés

ad
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Programmers Once (Thought They)
Understood Computer Architecture

Image: Computer Systems, A Programmer's Perspective, 
Bryant & O'Hallaron, 2011
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Symmetric Multiprocessors Were Fairly Simple
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Concurrent Code Makes Architecture Visible

 Consider message passing.
 Pretty much the simplest thing you can do with shared memory.
 Systems like Barrelfish rely on it.

 When are barriers required?
 You can't write good code, without sufficiently 

understanding the hardware.
 We're combining components in

new ways.
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Message Passing with Shared Memory

CPU
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Write: *x = 42
Read: *x = 42
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Message Passing with a Write Buffer
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Message Passing with a Barrier
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Of Course, CPUs Aren't That Simple
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You Can't Trust the Hardware

 seL4 was verified modulo 
a hardware model.

 The Cortex A8 has bugs:
 Cache flushes don't work.
 As of today, these “errata” 

are still not public.
 We rediscovered these by 

accident.
 Non-coherent memory is 

coming.

Source: Chip Errata for the i.MX51, Freescale Semiconductor
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And Then There's Rack Scale...
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There's a Lot of Data Available
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ARM High-Speed Serial Trace Port

 Streams from the Embedded 
Trace Macrocell.

 Cycle-accurate control flow + 
events @ 6GiB/s+

 Compatible with FPGA PHYs.
 Well-documented protocol.

 Aurora 8/10
 Available on ARMv8

Image: Teledyne Lecroy
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The HSSTP Hardware

 The official tool is CHF10,000 per core.
 The cable run is maximum 15cm.
 It's PHY-compatible with common FPGAs
 A CHF6k FGPA could easily handle 10.

 15x cheaper!
 We have a development prototype.
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HSSTP Testbench
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Fancy Triggering and Filtering

 The ETM has sophisticated 
filtering e.g. Sequencer.

 Bn and Fn can be just about any 
events on the SoC.

 States can enable/disable trace, 
or log events.

 A powerful facility for pre-filtering

State 0

State 1

State 2

State 3

B2

B1

B0 F0

F1

F2
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Filtering and Offload in an FPGA

 We'll need to intelligently filter high-rate 
data.

 We're using an FPGA for the physical 
interface already.

 How much processing could we do?
 We have expertise in the group with 

FPGA query offloading
 We have a Master's student working on this. 
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What Could We Do With This Data?



14 September 2016David Cock 21||

Hardware Tracing for Correctness

unmap(pa);
cleanDCache();
flushTLB();

 

 

Are HW operations right?
5Gb/s

Filter at line rate

Check temporal
assertionsLog & process offline

● Real time pipeline trace on ARM.
● Can halt and inspect caches.
● HW has “errata” (bugs).
● Check that it actually works!
● Catch transient and race bugs.
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Hardware Tracing for Performance

5Gb/s

Filter at line rate

Log & process offline

URPC[0]= x;
URPC[1]= 1;

while(!URPC[1]);
x= URPC[0];

1

2

x 1

xCore 0

Core 1

Cache 0

Cache 1

INVAL(0)
READ(1)
…

Is URPC optimal?

• Should see N coherency messages.
• Do we?

‐ The HW knows!
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Properties to Check:
Security

 Runtime verification is an 
established field.

 Lots of existing work to 
build on.

 What properties could we 
check efficiently?

 How could we map them 
to the filtering pipeline?

/* A very simple TESLA assertion. */
TESLA_WITHIN(example_syscall,
   previously(security_check(ANY(ptr), 
              o, op) == 0));

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/
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Processing Engine

 That's a lot of data, how can we process it?
 This is what rack-scale systems are for!
 We have a software pipeline, thanks to a Master's 

student: Andrei Pârvu.



14 September 2016David Cock 25||

Properties to Check:
Memory Management

 Could we check this?

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.
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Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard 
algorithms exist:

11000000

00100211

00111011

00111111

11000111

malloc

free

free

malloc

free

free

free

malloc

malloc

malloc

00111010

00111110

11000110

free

malloc

malloc

free

malloc

free free

malloc

malloc
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Bound Variables and Multiple Automata

 So far only one x value.
 Every x needs an 

automaton instance.

Gp $free(1) −> P !$free(1) S 1 = $malloc;

Gp $free(2) −> P !$free(2) S 2 = $malloc;

Gp $free(3) −> P !$free(3) S 3 = $malloc;

free

malloc

malloc

free

malloc

malloc

free

malloc

malloc

 Requires dynamic allocation.
 Not trivial in HW.
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A Streaming Verification Engine

HSSTP
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Software Pipeline Performance
LTL checking in software
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Software Pipeline Performance
Trace parsing in software
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Offloading Verification

● Think regular expressions for infinite 
streams.

● As for REs, we compile a checking 
automaton.

● Run the automaton in real time and 
look for violations.

● FPGAs are good at state machines.
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Offloading Parsing

 Currently the bulk of the runtime.
 Not as straightforward on the FPGA.
 Current student project.
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An Instrumented Rack-Scale System

● 64 SoCs x 5Gb/s = 320Gb/s trace output.
● Online checkers (e.g. automata) will be 

essential at this scale.
● We're going to build this:
– A rack of ARMv8 cores & FPGAs.
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BRISC



||

A deadly embrace

Product hardware is designed for current 
application workloads running on Linux.

Innovation (and research) in system software is 
constrained by available commodity hardware. 



 ||

The Gap.

For many commercially relevant workloads, cores spend much 
of their time in the OS. 

BUT:
• Processor architects ignore OS designers

– Simply don’t understand the OS problem
– Cores rarely evaluated with >1 app running anyway

• HPC people try to remove the OS
– And then blow the rest of their s/w development budget putting it 

back in a user library. 
• and OS design people?

– Complain among themselves and try and deal with it
– Don't even try to influence hardware
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A deadly embrace

Product hardware is designed for current 
application workloads running on Linux.

Innovation (and research) in system software is 
constrained by available commodity hardware. 
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Solution: BRISC

38

 A hardware research platform for system 
software
 Massively overengineered wrt. products
 Highly configurable building block for rackscale 
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Sketch

Large
server-class 

SoC

Large
server-class 

SoC

High-end FPGA 
(e.g Xilinx Zynq 

ZU17EG)

High-end FPGA 
(e.g Xilinx Zynq 

ZU17EG)
Coherence

100 Gb
Ethernet

 0.5TB
DDR4

 0.5TB
DDR4

As many 
100Gb 
QSFP+

cages as 
possible

~ 32GB
DDR4

~ 32GB
DDR4

SATA, PCIe, UART, NVMe, USB UART, USB, SD
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All kinds of uses for this…
• Plug lots together for rack-scale computing
• Use the FPGA for data processing offload
• Emulate large distributed NVRAM
• Sequester processors using the FPGA
• Runtime verification of program trace
• Experiment scaling coherency
• Build a dataprocessing network switch
• etc. etc. etc. 
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Higher goal: research amplification

• Seed the research community
– Remove major barrier to innovation at a stroke

• Precedents:
– PlanetLab
– Berkeley Unix
– …

13 September 2016
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Questions?
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Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard 
algorithms exist:

Gp P, at t-1
„P was true until t-1“

P, at t
„P is still true at t“

Gp P, at t
„P has always been true“

0 0 0

0 1 0

1 0 0

1 1 1
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