
FPGAs as Tools and Architectures
at ETH Systems

14 September 2016David Cock 2||

FPGAs as Tools and Architectures
at ETH Systems

Real-Time Tracing and Verification
 The FPGA as a tool.
 Analysing a multi-Gb trace stream in real time.

BRISC – Research Architecture for Large Systems
 The FPGA as an architecture.
 A platform for hardware and software research.
 Expose the coherent interface to an FPGA, with lots and

lots of fast IO links.

14 September 2016David Cock 3||

Real-Time Tracing and Verification

14 September 2016David Cock 4||

Collide instructions at 0.99c, and observe the decay products.

We're Going to Build a Large Program Collider

Images: CERN; Chaix & Morel et associés

ad

14 September 2016David Cock 5||

Programmers Once (Thought They)
Understood Computer Architecture

Image: Computer Systems, A Programmer's Perspective,
Bryant & O'Hallaron, 2011

14 September 2016David Cock 6||

Symmetric Multiprocessors Were Fairly Simple

WB

WB

Cache

Cache

RAM

14 September 2016David Cock 7||

Concurrent Code Makes Architecture Visible

 Consider message passing.
 Pretty much the simplest thing you can do with shared memory.
 Systems like Barrelfish rely on it.

 When are barriers required?
 You can't write good code, without sufficiently

understanding the hardware.
 We're combining components in

new ways.

14 September 2016David Cock 8||

Message Passing with Shared Memory

CPU

RAM

CPU

Write: *x = 42
Read: *x = 42

*x = 0*x = 42 *y = 1*y = 0

Write: *y = 1

Read: *y = 1

14 September 2016David Cock 9||

Message Passing with a Write Buffer

CPU

RAM

CPU

Write: *x = 42
Read: *x = 0

*x = 0

*x = 42
*y = 1

*y = 0

Write: *y = 1

Read: *y = 1

WB

*y = 1

14 September 2016David Cock 10||

Message Passing with a Barrier

CPU

RAM

CPU

Write: *x = 42
Read: *x = 42

*x = 0

*x = 42

*y = 1

*y = 0

Write: *y = 1

Read: *y = 1

WB

*y = 1*x = 42

14 September 2016David Cock 11||

Of Course, CPUs Aren't That Simple

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3RAM

Coherent
InterconnectPCI

9 hops

14 September 2016David Cock 12||

You Can't Trust the Hardware

 seL4 was verified modulo
a hardware model.

 The Cortex A8 has bugs:
 Cache flushes don't work.
 As of today, these “errata”

are still not public.
 We rediscovered these by

accident.
 Non-coherent memory is

coming.

Source: Chip Errata for the i.MX51, Freescale Semiconductor

14 September 2016David Cock 13||

And Then There's Rack Scale...

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

PCI NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

T
O

R

T
O

R

Backhaul

14 September 2016David Cock 14||

There's a Lot of Data Available

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

PCI NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

T
O

R

T
O

R

Backhaul

Program trace
Cache dumps

Port mirroring

Openflow

Event triggers

14 September 2016David Cock 15||

ARM High-Speed Serial Trace Port

 Streams from the Embedded
Trace Macrocell.

 Cycle-accurate control flow +
events @ 6GiB/s+

 Compatible with FPGA PHYs.
 Well-documented protocol.

 Aurora 8/10
 Available on ARMv8

Image: Teledyne Lecroy

14 September 2016David Cock 16||

The HSSTP Hardware

 The official tool is CHF10,000 per core.
 The cable run is maximum 15cm.
 It's PHY-compatible with common FPGAs
 A CHF6k FGPA could easily handle 10.

 15x cheaper!
 We have a development prototype.

14 September 2016David Cock 17||

HSSTP Testbench

14 September 2016David Cock 18||

Fancy Triggering and Filtering

 The ETM has sophisticated
filtering e.g. Sequencer.

 Bn and Fn can be just about any
events on the SoC.

 States can enable/disable trace,
or log events.

 A powerful facility for pre-filtering

State 0

State 1

State 2

State 3

B2

B1

B0 F0

F1

F2

14 September 2016David Cock 19||

Filtering and Offload in an FPGA

 We'll need to intelligently filter high-rate
data.

 We're using an FPGA for the physical
interface already.

 How much processing could we do?
 We have expertise in the group with

FPGA query offloading
 We have a Master's student working on this.

14 September 2016David Cock 20||

What Could We Do With This Data?

14 September 2016David Cock 21||

Hardware Tracing for Correctness

unmap(pa);
cleanDCache();
flushTLB();

Are HW operations right?
5Gb/s

Filter at line rate

Check temporal
assertionsLog & process offline

● Real time pipeline trace on ARM.
● Can halt and inspect caches.
● HW has “errata” (bugs).
● Check that it actually works!
● Catch transient and race bugs.

14 September 2016David Cock 22||

Hardware Tracing for Performance

5Gb/s

Filter at line rate

Log & process offline

URPC[0]= x;
URPC[1]= 1;

while(!URPC[1]);
x= URPC[0];

1

2

x 1

xCore 0

Core 1

Cache 0

Cache 1

INVAL(0)
READ(1)
…

Is URPC optimal?

• Should see N coherency messages.
• Do we?

‐ The HW knows!

14 September 2016David Cock 23||

Properties to Check:
Security

 Runtime verification is an
established field.

 Lots of existing work to
build on.

 What properties could we
check efficiently?

 How could we map them
to the filtering pipeline?

/* A very simple TESLA assertion. */
TESLA_WITHIN(example_syscall,
 previously(security_check(ANY(ptr),
 o, op) == 0));

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/

14 September 2016David Cock 24||

Processing Engine

 That's a lot of data, how can we process it?
 This is what rack-scale systems are for!
 We have a software pipeline, thanks to a Master's

student: Andrei Pârvu.

14 September 2016David Cock 25||

Properties to Check:
Memory Management

 Could we check this?

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.

14 September 2016David Cock 26||

Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard
algorithms exist:

11000000

00100211

00111011

00111111

11000111

malloc

free

free

malloc

free

free

free

malloc

malloc

malloc

00111010

00111110

11000110

free

malloc

malloc

free

malloc

free free

malloc

malloc

14 September 2016David Cock 27||

Bound Variables and Multiple Automata

 So far only one x value.
 Every x needs an

automaton instance.

Gp $free(1) −> P !$free(1) S 1 = $malloc;

Gp $free(2) −> P !$free(2) S 2 = $malloc;

Gp $free(3) −> P !$free(3) S 3 = $malloc;

free

malloc

malloc

free

malloc

malloc

free

malloc

malloc

 Requires dynamic allocation.
 Not trivial in HW.

14 September 2016David Cock 28||

A Streaming Verification Engine

HSSTP

Packet
Capture

Sources Capture Processing Properties

ETM
Sequencer

FPGA
Capture

Dataflow
Engine

FPGA
Offload

TESLA

malloc()
pairing

Coherence
correctness

Constraints Requirements

14 September 2016David Cock 29||

Software Pipeline Performance
LTL checking in software

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(s

ec
on

ds
)

Number of events (1000s)

No double allocation
No double frees

No leaks

14 September 2016David Cock 30||

Software Pipeline Performance
Trace parsing in software

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(s

ec
on

ds
)

Number of events(1000s)

Write trace
Trace

Write trace w/ASM
ASM

Write parsed trace
Parser

14 September 2016David Cock 31||

Offloading Verification

● Think regular expressions for infinite
streams.

● As for REs, we compile a checking
automaton.

● Run the automaton in real time and
look for violations.

● FPGAs are good at state machines.

14 September 2016David Cock 32||

Offloading Parsing

 Currently the bulk of the runtime.
 Not as straightforward on the FPGA.
 Current student project.

14 September 2016David Cock 33||

An Instrumented Rack-Scale System

● 64 SoCs x 5Gb/s = 320Gb/s trace output.
● Online checkers (e.g. automata) will be

essential at this scale.
● We're going to build this:
– A rack of ARMv8 cores & FPGAs.

14 September 2016David Cock 34||

BRISC

||

A deadly embrace

Product hardware is designed for current
application workloads running on Linux.

Innovation (and research) in system software is
constrained by available commodity hardware.

 ||

The Gap.

For many commercially relevant workloads, cores spend much
of their time in the OS.

BUT:
• Processor architects ignore OS designers

– Simply don’t understand the OS problem
– Cores rarely evaluated with >1 app running anyway

• HPC people try to remove the OS
– And then blow the rest of their s/w development budget putting it

back in a user library.
• and OS design people?

– Complain among themselves and try and deal with it
– Don't even try to influence hardware

||

A deadly embrace

Product hardware is designed for current
application workloads running on Linux.

Innovation (and research) in system software is
constrained by available commodity hardware.

||

Solution: BRISC

38

 A hardware research platform for system
software
 Massively overengineered wrt. products
 Highly configurable building block for rackscale

||

Sketch

Large
server-class

SoC

Large
server-class

SoC

High-end FPGA
(e.g Xilinx Zynq

ZU17EG)

High-end FPGA
(e.g Xilinx Zynq

ZU17EG)
Coherence

100 Gb
Ethernet

 0.5TB
DDR4

 0.5TB
DDR4

As many
100Gb
QSFP+

cages as
possible

~ 32GB
DDR4

~ 32GB
DDR4

SATA, PCIe, UART, NVMe, USB UART, USB, SD

||

All kinds of uses for this…
• Plug lots together for rack-scale computing
• Use the FPGA for data processing offload
• Emulate large distributed NVRAM
• Sequester processors using the FPGA
• Runtime verification of program trace
• Experiment scaling coherency
• Build a dataprocessing network switch
• etc. etc. etc.

||

Higher goal: research amplification

• Seed the research community
– Remove major barrier to innovation at a stroke

• Precedents:
– PlanetLab
– Berkeley Unix
– …

13 September 2016

||

Questions?

14 September 2016David Cock 43||

Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard
algorithms exist:

Gp P, at t-1
„P was true until t-1“

P, at t
„P is still true at t“

Gp P, at t
„P has always been true“

0 0 0

0 1 0

1 0 0

1 1 1

	Slide 1
	Slide 2
	Slide 3
	HW Tracing for Correctness
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	HW Tracing for Performance
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	A deadly embrace
	The Gap.
	A deadly embrace
	Solution: BRISC
	Sketch
	All kinds of uses for this…
	Higher goal: research amplification
	Slide 42
	Slide 43

