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Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:
A modern processor.
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Probability Refines Nondeterminism

Classical nondeterminism is the ultimate in pessimism:
Anything that can happen will happen.

If we know how events are distributed, we can do better.

Probabilistic models are a halfway-house between full
nondeterminism and full predictability.

Probabilistic guarantees are relevant both for security, and
for reliability.

Our current work is on probabilistic security guarantees.
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Why is this relevant in systems?

Feed a secret string and a guess to strcmp:
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This is a side-channel, which exposes the secret.

How bad is it? How can we mitigate it?
How will it behave in a larger system?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 5/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Why is this relevant in systems?

Feed a secret string and a guess to strcmp:

0

0.01

0.02

0.03

0.04

24 24.5 25

p
ro

b
ab

il
it

y
 d

en
si

ty

response time (µs)

correct prefix length
0
1
2

This is a side-channel, which exposes the secret.

How bad is it? How can we mitigate it?
How will it behave in a larger system?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 5/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Why is this relevant in systems?

Feed a secret string and a guess to strcmp:

0

0.01

0.02

0.03

0.04

24 24.5 25

p
ro

b
ab

il
it

y
 d

en
si

ty

response time (µs)

correct prefix length
0
1
2

This is a side-channel, which exposes the secret.

How bad is it? How can we mitigate it?
How will it behave in a larger system?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 5/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Proving Security

Probabilistic verification can help us answer these questions.

We want to show something like:

℘ ((r , τ) := strcmp(g, s);

g := cleverness(r , τ, g)) (g = s) ≤ 2−100

Formulating this rigorously is the subject of our existing work.

Mechanising this work in Isabelle/HOL ensures our
reasoning is sound, and scalable to large problems.

We use pGCL, an extension of Dijkstra’s GCL with
probability.
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Judgements on Programs

How do we interpret this?

{x = 0} y := x2{y = x}

This relates a program to an annotation.
If x = 0 holds before, then y = x holds afterwards.

Is x = 0 maximal? No, x = 1 works too.

{x = 0 ∨ x = 1} is maximal,
it is the weakest precondition of {y = x}.

℘ a Q ≡ sup {P|P a Q}

{R} ≤ {S} ≡ R ` S ≡ ∀s. R s → S s
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Nondeterminism

Nondeterminism allows us to underspecify a program.

We write a u b for ‘Do either a or b’.

We let a demon make the choice, who tries to trip us up.

What is ℘ (y := x2 u y := 2x) (y = x)?

Algebraically: ℘ (a u b) Q = ℘ a Q ∩ ℘ b Q

Thus P = {x = 0 ∨ x = 1} ∩ {x = 0} = {x = 0}.
We are treating annotations as sets.
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Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.
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Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Combining Probability and Nondeterminism

How about this?

E = ℘
(
(y := x2

1/2⊕ y := 2x) u

(y := x2
1/3⊕ y := 2x)

)
(y = x)

Simply apply both rules:

E x = min (1/2× «x = 0 ∨ x = 1» + 1/2× «x = 0»)

(1/3× «x = 0 ∨ x = 1» + 2/3× «x = 0»)

This time, E 0 = 1 and E 1 = 1/3.

E x is the minimum probability that y = x will hold.
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pGCL

These are basics of pGCL (Morgan & McIver, 2004).

It’s a formal model of computation incorporating probability
and nondeterminism.

In the remainder of the talk I will introduce our
mechanisation in Isabelle/HOL, and our work on the
probabilistic verification of systems software.
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Expectations

The pGCL package provides a shallow embedding into HOL.

Expectations use the standard real number type:

E :: σ ⇒ R

This allows us to use existing results directly.

Expectations are nonnegative and bounded:

nneg E ≡ ∀s. 0 ≤ E s bounded E ≡ ∃b. ∀s. E s ≤ b

The state space need not, in general, be finite.
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Expectation Transformers

Programs are expectation transformers:

℘ a :: (σ ⇒ R)⇒ σ ⇒ R

We usually restrict our attention to healthy transformers:

∀P b. bounded_by b P ∧ nneg P →
bounded_by b (t P) ∧ nneg (t P)

∀P Q. (sound P ∧ sound Q ∧ P ` Q) −→ (t P) ` (t Q)

∀P c s. (sound P ∧ 0 < c) −→ c × t P s = t (λs. c × P s) s
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A few primitives

Abort ≡ λab P. if ab then λs. 0 else λs. bound_of P

a u b ≡ λab P s. min (a ab P s) (b ab P s)

a p⊕ b ≡ λab P s. p × (a ab P s) + (1− p)× (b ab P s)

℘ a ≡ a True

We model both strict (WP) and liberal (WLP) semantics.

All these primitives are healthy.
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Embedding a Monad

The shallow embedding makes it easy to embed the
L4.verified nondeterministic monad:

Exec :: (σ ⇒ (α× σ) set)⇒ bool⇒ (σ ⇒ R)⇒ σ ⇒ R
Exec M ≡ λab R s. glb {R (snd sa). sa ∈ M s}

We lift Hoare triples to probabilistic entailments:

WP_EXEC

{P} prog {λr s. Q s} ∀s. prog s 6= {} ∃s. P s

«P» ` ℘ prog «Q»
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Refinement

One of the principle tools in verification is refinement.

A refinement relation allows us to transfer properties from
specification to implementation:

a v b E ` ℘.a.F
E ` ℘.b.F

Given E , if a establishes F , then so does b or:

℘.a.F ≤ ℘.b.F

In pGCL, an implementation establishes any property
with at least as great a probability as its specification.
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Lattice Scheduling

An approach to efficiently eliminating leaks through shared
state e.g. caches.

Only switch to a domain with higher clearance, or to the
downgrader, which clears the cache:

scheduleL ≡ cd :∈ λs. {n|(cd , n) ∈ S}

The security property:

∀c, n. (c, n) ∈ S → sec_class.c ≤ sec_class.n ∨
n = downgrader
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Unfairness

H

La

99

Lb

ee

downgrader

ee 99

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

5=

Lb

ee

downgrader

ai 99

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ai

downgrader

ee 5=

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ai

downgrader

ee 5=

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ai

downgrader

ee 5=

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Randomised Lattice Scheduling

We’d still like to have asymptotic fairness between domains.

Start by randomising:

scheduleR ≡ cd :∈ UNIV at (λs n. T (cd , n))

If the matrix T satisfies:

∀c n. 0 < T (c, n)→ (c, n) ∈ S

we have refinement, scheduleL v scheduleR.

This scheduler is a Markov process, and if T is irreducible
and positive recurrent, there exists a stationary distribution.
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Lottery Scheduling

An efficient implementation might use a lottery:

scheduleM t ≡ do

c ← gets cd; l ← gets lottery;

let n = l c t in modify(λs. s(cd := n))

od

The lottery has type: domain⇒ word32⇒ domain.

We chain in probability from above:

scheduleC ≡ t from UNIV at 2−32 in Exec (scheduleM t)
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Data Refinement

We cannot show that scheduleR v scheduleC, as they
operate on different state spaces:

record stateA = cd :: domain

record stateC = cd :: domain,

lottery :: domain⇒ word32⇒ domain

The lottery is an implementation detail, only cd matters.

Take the natural projection: φ :: stateC⇒ stateA.
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Data Refinement

We define data refinement, vφ,Pre:

a vφ,Pre b E ` ℘ a F Pre s

(E ◦ φ) s ` ℘ b (F ◦ φ) s

If the ticket distribution represents the transition matrix:

LR s ≡ ∀c, n. T (c, n) =
∑

t. lottery s c t=n

2−32

we have another refinement step:

scheduleL v scheduleR

vφ,LR scheduleC
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Attaching the Kernel

Finally, we attach a kernel model:

stepKernel ≡ callKernel; scheduleC

We need only a few high-level properties, including:

{cd = d} callKernel {cd = d}

which is a specification in the L4.verified Hoare logic, from
which we establish:

Skip vφ,LR callKernel

The kernel may modify the lottery!
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Attaching the Kernel

If the kernel additionally preserves the lottery relation:

{LR} callKernel {LR}

then we have the full refinement chain:

scheduleL v scheduleR

vφ,LR stepKernel

The kernel implements a fair, secure scheduler.
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Summary

We have:

• Motivated probabilistic verification for systems.

• Mechanised pGCL in Isabelle/HOL.

• Verified a randomised scheduler.
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Questions?
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