seL

The C Kernel Bitfield DSL

Lyrabird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Questions

10 Years of Trustworthy Systems

David Cock

July 29, 2014

Outline

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability &

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Ouestions

1 seL4 The C Kernel Bitfield DSL

- 2 Lyrebird Simulation for Verification Modelling ARM
- 3 Probability & Security Side Channels Remote Exploits pGCL
- 4 Projects Vlibc Opportunistic Verificatio
- 6 Questions

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic

Questions

seL4

First ever verified kernel.

- Writen in C high-performance.
- Verified in Isabelle/HOL.

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic

Ouestions

seL4

First ever verified kernel.

- Writen in C high-performance.
- Verified in Isabelle/HOL.
- Open source from yesterday!

http://sel4.systems

Side Channels
Remote

Exploits pGCL

Projects

Vlibc Opportunistic Verification

Questions

The C kernel implements the high-level specification.

- Initial implementation 2 weeks.
- Small 8,700 lines.
- Fast 224cyc one-way IPC.
- DSL automation bitfields.

sel

The C Kernel Bitfield DSL

Lyrabird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

0 .:

The seL4 Call Graph

seL

The C Kernel Bitfield DSL

Lyrabird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Questions

The seL4 Call Graph

seL

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

- 573 functions.
- Not modular No SCCs..... except those leaves.

sel

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Question

- 573 functions.
- Not modular No SCCs. except those leaves.
- 198 of these: 35% of functions, 16% of LOC.

and /

The C Kernel

Lvrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

- 573 functions.
- Not modular No SCCs. except those leaves.
- 198 of these: 35% of functions, 16% of LOC.
- Generated and proved automatically from a DSL.

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL Project

Vlibc Opportunistic Verification

0 .:

```
DSL:
```

```
base 32 block B { padding 3 field Y 13 field Z 16 }
```

The C Kernel

Lyrebird Simulation for Verification Modelling ARM

Probability & Security
Side Channels
Remote
Exploits

pGCL Project:

Vlibc Opportunistic Verification

Ouestions

```
DSL:
```

```
base 32 block B { padding 3 field Y 13 field Z 16 } \,
```

• C:

```
static inline void
B_ptr_set_X(B_t *B_ptr, uint32_t v) {
    B_ptr->words[0] &= ~0x1fff0000;
    B_ptr->words[0] |= (v<<16)&0x1fff0000;
}</pre>
```

seL4 The C Kernel

Bitfield DSL

Simulation for Verification Modelling ARM

Probability & Security
Side Channels

Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Ouestions

DSL:

```
base 32
block B { padding 3 field Y 13 field Z 16 }
```

C:

```
static inline void
B_ptr_set_X(B_t *B_ptr, uint32_t v) {
    B_ptr->words[0] &= ~0x1fff0000;
    B_ptr->words[0] |= (v<<16)&0x1fff0000;
}</pre>
```

HOL:

```
B_lift \ B \equiv (B_CL.X_CL = ((index \ (B_C.words_C \ B) \ 0) >> 16) \ AND \ 8191, \\ B_CL.Y_CL = ((index \ (B_C.words_C \ B) \ 0) >> 0) \ AND \ 65535)
```

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic

Questions

Automation Helps!

- 35% of the functions in seL4 were proved automatically.
- The tool is now widely used in NICTA.
- It's used by engineers, not formal methods people.
- Many features not mentioned: tagged unions, multilevel decoding,

Security
Side Channels
Remote
Exploits

pGCL Projects

Vlibc Opportunistic Verification

Questions

For more see:

- Running the manual: An approach to high-assurance microkernel development, Haskell Workshop '06.
- Bitfields and tagged unions in C: verification through automatic generation, VERIFY'08.
- Secure microkernels, state monads and scalable refinement, TPHOLS'08.
- Mind the gap: A verification framework for low-level C, TPHOLS'09.
- seL4: Formal verification of an OS kernel, SOSP'09

Outline

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability &

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Ouestions

1 seL4 The C Ke

Bitfield DSL

2 Lyrebird Simulation for Verification Modelling ARM

- 3 Probability & Security
 Side Channels
 Remote Exploits
 pGCL
- 4 Projects
 Vlibc
 Opportunistic Verification
- 6 Questions

seL

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Questions

- A DSL for CPU/system modelling.
- High performance simulator.
- Automatic formal model.
- Used to prototype seL4.

The C Kernel Bitfield DSL

Simulation for Verification Modelling ARM

Probability &

Side Channels Remote Exploits

pGCL

Vlibc Opportunistic Verification

Program proof is important, but there's more to do.

The C Kernel Bitfield DSL

Simulation for Verification Modelling

ARM

Probability &

Side Channels Remote Exploits

pGCL

Vlibc Opportunistic Verification

Program proof is important, but there's more to do.

The C Kernel Bitfield DSL

Simulation for Verification

Modelling ARM

Probability Security

Side Channels Remote Exploits

pGCL Project

Vlibc Opportunistic Verification

Questions

Program proof is important, but there's more to do.

Any statement "P is True" is incomplete: It must be read as ", under Q - my model of the world".

Goal

Development outcomes: program, proof and model.

The C Kernel Bitfield DSL

Simulation for Verification

Modelling ARM

Probability &

Side Channels Remote Exploits

pGCL

Vlibe

Opportunistic Verification

Program proof is important, but there's more to do.

seL4 The C Kernel

Bitfield DSL

Simulation for

Verification Modelling ARM

Probability of

Side Channels Remote Exploits

pGCL Project:

> Vlibc Opportunistic Verification

0 .:

Program proof is important, but there's more to do.

Our approach is a language framework: Lyrebird.

10 Years of Trustworthy Systems

David Cock

The C Kernel Bitfield DSL

Simulation for Verification

Modelling ARM

Probability &

Side Channels Remote Exploits pGCL

Projects

Vlibc

Opportunistic Verification

seL

The C Kernel Bitfield DSL

Lyrebire

Simulation for Verification Modelling

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc

Opportunistic Verification

Ouestion

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification

Modelling ARM

Probability &

Side Channels Remote

Exploits pGCL

Project:

Vlibc

Opportunistic Verification

Ougetions

The C Kernel Bitfield DSL

Simulation for Verification

Modelling ARM

Probability &

Side Channels Remote Exploits pGCL

Vlibc Opportunistic Verification

The C Kernel Bitfield DSL

Simulation for Verification

Modelling ARM

Probability &

Side Channels Remote Exploits pGCL

Vlibc

Opportunistic Verification

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling

Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL Project

Vlibe

Opportunistic Verification

Questions

A simple model of a CPU connected to RAM.

The C Kernel

Lyrebird

Simulation for

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Ougetions

Modules are written in Lyrebird.

The C Kernel

Lyrebird

Simulation for

Modelling ARM

Probability &

Side Channels Remote

Exploits pGCL

Project

Vlibc Opportunistic

Questions

The cycle specifies asynchronous behaviour.

The C Kernel

Lyrebird

Simulation for

Modelling ARM

Probability &

Side Channels Remote Exploits

pGCL Project:

Vlibe

Opportunistic Verification

Questions

Modules export instructions.

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Questions

All behaviour is built from register transfers.

The C Kernel

Lyrebird

Simulation for Verification

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project:

Vlibc Opportunistic

Ouestions

Modules are linked by interfaces.

The C Kernel

Lyrebird

Simulation for Verification Modelling

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project:

Vlibc Opportunistic

Ouestions

Interfaces define transactions.

The C Kernel

Lyrebird

Simulation for Verification Modelling ARM

Probability &

Side Channels
Remote
Exploits
pGCL

Projects

Vlibc Opportunistic

Ouestions

Transactions access the datapath.

The C Kernel Bitfield DSL

Simulation for Verification

Modelling ARM

Probability &

Side Channels Remote Exploits

pGCL

Vlibc

Opportunistic Verification

Interfaces and modules allow different implementations.

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Ouestions

Lyrebird can also be used to model devices.

The C Kernel

Lyrebird

Simulation for Verification

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Ouestions

Register types have explicit width.

The C Kernel

Lyrebird

Simulation for Verification

Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic

Questions

Type-checked macros minimize duplication.

The C Kernel

Lyrebird

Simulation for Verification

Modelling ARM

Probability & Security
Side Channels

Remote Exploits

Project

Vlibc Opportunistic

Ouestions

Transactions are implemented by modules.

Lyrebird

Simulation for Verification

Modelling ARM

Probability

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Questions

ARMv6 Model

- We have an ARMv6 user-level integer instruction model.
- Floating-point and vector operations are excluded.
- The complete model is approximately 1600 lines.
- We used it to validate the seL4 Haskell prototype.

The C Kernel Bitfield DSL

Simulation for Verification Modelling

ΔRM

Side Channels Remote Exploits

pGCL

Vlibe Opportunistic Verification

Simulation

Register transfer is easy to simulate.

The simulator is portable and fast — 10MIPS for ARMv6 user.

The output is a single C module;

It is easily incorporated into larger simulations.

Further Reading

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling

ARM

Probability &

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

For more see:

• Lyrebird — assigning meanings to machines, SSV'10

Outline

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebire

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Ouestions

The C Kerne

2 Lyrebird
Simulation for Verification
Modelling ARM

- 3 Probability & Security
 Side Channels
 Remote Exploits
 pGCL
- 4 Projects
 Vlibc
 Opportunistic Verification
- 6 Questions

. . .

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

.

The Problem

The attacker tries to guess the lock combination.

ool /

The C Kernel Bitfield DSL

Lvrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Verification

Questions

The Problem

After n tries he's locked out.

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

Questions

The Problem

Every guess leaks something about the combination.

sel /

The C Kernel Bitfield DSL

Lyrabird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

The Cache Channel

The C Kernel Bitfield DSL

Lynnalstad

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

0 .:

The Cache Channel

• It's easy to spot a cache miss.

The C Kernel Bitfield DSL

Simulation for Verification Modelling ARM

Probability &

Side Channels Remote Exploits pGCL

Vlibe Opportunistic Verification

The Cache Channel

- It's easy to spot a cache miss.
- Cache contention forms a channel.

seL4
The C Kernel
Bitfield DSL

Lyrebird

ARM

Simulation for Verification

Probability Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

The Cache Channel

- It's easy to spot a cache miss.
- Cache contention forms a channel.
- This is a big problem in crypto e.g. AES.

10 Years of Trustworthy Systems

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability of Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

The Cache Channel

- It's easy to spot a cache miss.
- Cache contention forms a channel.
- This is a big problem in crypto e.g. AES.

We ran a large empirical evaluation:

- 3 channels, 2 countermeasures and 5 platforms.
- 6 months of observations
- Integrated with regression tests.

10 Years of Trustworthy Systems

David Cock

The C Kernel

Lyrebir

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

Processor	iMX.31	E6550	DM3730	AM3358	Exynos4412
Manufacturer	Freescale	ln t el	TI	TI	Samsung
Architecture	ARM∨6	×86-64	ARMv7	ARMv7	ARM∨7
Core type	ARM1136JF-S	Conroe	Cortex A8	Cortex A8	Cortex A9
Released	2005	2007	2010	2011	2012
Cores	1	2	1	1	4
Clock rate	532 MHz	2.33 G Hz	1 G Hz	720 MHz	1.4 G Hz
Timeslice	1 ms	2 ms	1 ms	1 ms	1 ms
RAM	128 MiB	1024 MiB	512 MiB	256 MiB	1024 MiB
L1 D-cache					
size	16 KiB	32 KiB	32 KiB	32 KiB	32 KiB
in d e×	virtual	physical	v irtu al	v irtu al	virtual
tag	physical	physical	physical	physical	physical
line size	32 B	64 B	64 B	64 B	32 B
lines	512	512	512	1024	512
associativity	4	8	4	4	4
sets	128	64	128	128	256
L2 cache					
size	128 KiB	4096 KiB	256 KiB	256 KiB	1024 KiB
line size	32 B	64 B	64 B	64 B	32 B
lines	4096	65,536	4096	4096	32,768
associativity	8	16	8	8	16
sets	512	4096	512	512	2048
colours	4	64	8	8	16

Table: Experimental platforms.

10 Years of Trustworthy Systems

David Cock

The C Kernel

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

Processor	iMX.31	E6550	DM3730	AM3358	Exynos4412
Manufacturer	Freescale	Intel	TI	TI	Samsung
Architecture	ARM∨6	×86-64	ARM∨7	ARM∨7	ARM∨7
Core type	ARM1136JF-S	Conroe	Cortex A8	Cortex A8	Cortex A9
Released	2005	2007	2010	2011	2012
Cores	1	2	1	1	4
Clock rate	532 MHz	2.33 G Hz	1 G Hz	720 MHz	1.4 G Hz
Timeslice	1 ms	2 ms	1 ms	1 ms	1 ms
RAM	128 MiB	1024 MiB	512 MiB	256 MiB	1024 MiB
L1 D-cache					
size	16 KiB	32 KiB	32 KiB	32 KiB	32 KiB
in d e×	virtual	physical	v irtu al	v irtu al	virtual
tag	physical	physical	physical	physical	physical
line size	32 B	64 B	64 B	64 B	32 B
lines	512	512	512	1024	512
associativity	4	8	4	4	4
sets	128	64	128	128	256
L2 cache					
size	128 KiB	4096 KiB	256 KiB	256 KiB	1024 KiB
line size	32 B	64 B	64 B	64 B	32 B
lines	4096	65,536	4096	4096	32,768
associativity	8	16	8	8	16
sets	512	4096	512	512	2048
colours	4	64	8	8	16

Table: Experimental platforms.

seL4

The C Kernel Bitfield DSL

Lvrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL

Vlibe

Opportunistic

Questions

Exynos4 Cache Channel

Bandwidth: 7.04kb/s

sel /

The C Kernel Bitfield DSL

Constitution of

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic

0 11

Cache Colouring

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability &

Side Channels Remote Exploits

Remote Exploits pGCL

Project

Vlibc Opportunistic

Questions

Coloured Cache Channel

sel A

The C Kernel Bitfield DSL

Lyrebir

Simulation for Verification Modelling ARM

Probability Security

Side Channels Remote

Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Questions

Residual TLB Channel

Simulation for Verification Modelling ARM

Side Channels Remote Exploits pGCL

Vlibe Opportunistic Verification

- This is a recent vulnerability in OpenSSL TLS.
 - Runtime depends on unvalidated user input.
 - Can be used as a decryption oracle.
 - 'Fixed' with a constant-time algorithm.
 - We reproduced the attack on seL4...

Lyrebi

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project:

Vlibc Opportunistic

Ouestions

This is a recent vulnerability in OpenSSL TLS.

- Runtime depends on unvalidated user input.
- Can be used as a decryption oracle.
- 'Fixed' with a constant-time algorithm.
- We reproduced the attack on seL4...
- ...and fixed it with better performance!
- Required no modifications to OpenSSL.

ا ا د

The C Kernel Bitfield DSL

Lorenhied

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL Project:

Vlibc Opportunistic Verification

Questions

The Lucky-13 Attack

ool /

The C Kernel Bitfield DSL

1000

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote

Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

0 .:

Intercontinental Attack

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote

Exploits pGCL

Project

Vlibc Opportunistic Verification

0 .:

Scheduled Delivery

 $in \longrightarrow SSL_read \longrightarrow handler -$

out <---- SSL_write <---- server <----

network

TLS

ا اه

The C Kernel Bitfield DSL

Lorenhied

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL

Project

Vlibc Opportunistic

0 .:

Scheduled Delivery

network

TLS

. . . .

The C Kernel Bitfield DSL

Lorenhied

Simulation for Verification Modelling ARM

Probability of Security

Side Channels Remote Exploits

pGCL Project

Vlibc Opportunistic Verification

0.....

Scheduled Delivery

network

TLS

--1

The C Kernel Bitfield DSL

Lorenteland

Simulation for Verification Modelling

Probability & Security

Side Channels Remote Exploits

pGCL

Vlibc Opportunistic

.

Scheduled Delivery

network

TLS

بامه

The C Kernel Bitfield DSL

Lorenhied

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL

Vlibc Opportunistic

.

Scheduled Delivery

network

TLS

بامد

The C Kernel Bitfield DSL

Lorenhied

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL Project

Vlibc Opportunistic

0 11

Scheduled Delivery

network

TLS

بامم

The C Kernel Bitfield DSL

Large Island

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL Project:

Vlibc Opportunistic

Questions

Lucky-13 Mitigated

1.4

The C Kernel Bitfield DSL

1000

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL

Project

Vlibc Opportunistic Verification

Ouestions

Load Performance

Further Reading

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability of Security

Side Channels Remote Exploits

pGCL

Vlibc Opportunistic

Questions

For more see:

- Exploitation as an inference problem, AISEC,11.
- The Last Mile: An Empirical Study of Some Timing Channels on seL4, CCS'13.

Lyrebird

Simulation for Verification Modelling ARM

Probability Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

pGCL

- pGCL is a language of probabilistic automata.
- It models both demonic and probabilistic choice.
- My Isabelle/HOL formalisation is now in the Archive of Formal Proofs.
- Used to formally verify probabilistic security properties e.g. side channel leakage.

Lyrebird

Simulation for Verification Modelling ARM

Probability Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

For more see:

- Verifying probabilistic correctness in Isabelle with pGCL, SSV'12
- From probabilistic operational semantics to information theory side channels with pGCL in isabelle, ITP'14
- pGCL for Isabelle, Archive of Formal Proofs, 2014

Outline

David Cock

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Questions

1 seL4

The C Kerne Bitfield DSL

- 2 Lyrebird Simulation for Verification Modelling ARM
- 3 Probability & Security
 Side Channels
 Remote Exploits
 pGCL
- 4 Projects Vlibc Opportunistic Verification
- 6 Questions

ر امه

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability &

Side Channels Remote Exploits

pGCL Project

Vlibe

Opportunistic

Questions

Can We Verify the C Library?

An open project:

- Work in a public repository.
- Code only accepted with proof.
- Self-contained student projects.

Lyrebird Simulation for

Verification Modelling ARM

Side Channels
Remote
Exploits
pGCL

Project

Vlibc Opportunistic

Opportunist Verification

Questio

Can We Verify the C Library?

An open project:

- Work in a public repository.
- Code only accepted with proof.
- Self-contained student projects.

Applications:

- Systems on a verified kernel.
- Library spec for symbolic execution (no tracing libc!).
- Verified compiler (CompCert) needs a verified runtime.

Lyrebi

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project

Vlibc Opportunistic Verification

Questions

Getting Value out of FM

You don't have to do seL4 to benefit from FM:

- Go for bang/buck.
- Focus on things likely to be wrong.
- Provide a toolset to programmers.

Lyrebi

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits pGCL

Project:

Vlibc Opportunistic Verification

A ...

Getting Value out of FM

You don't have to do seL4 to benefit from FM:

- Go for bang/buck.
- Focus on things likely to be wrong.
- Provide a toolset to programmers.

DSLs provide a convenient interface:

- We've seen examples: Bitfields, Lyrebird, . . .
- Match to tool to the job.
- Full formalism isn't exposed to programmers.
- Don't force everything into a single framework: provide tools!

Outline

David Cock

sel 4

The C Kernel Bitfield DSL

Lyrebird Simulation for

Verification Modelling ARM

Security 8

Side Channels Remote Exploits pGCL

Projects

Vlibc Opportunistic Verification

Questions

1 seL4

The C Kerne Bitfield DSL

2 Lyrebird
Simulation for Verification

3 Probability & Security Side Channels Remote Exploits

4 Projects

Vlibc

Opportunistic Verification

6 Questions

seL4

The C Kernel Bitfield DSL

Lyrebird

Simulation for Verification Modelling ARM

Probability & Security

Side Channels Remote Exploits

pGCL Project

Vlibc Opportunistic Verification

Questions

Questions?